File size: 7,213 Bytes
34a9259
afd2199
 
34a9259
22e7a27
91f9212
59f93ed
22e7a27
34a9259
afd2199
34a9259
 
 
 
 
 
 
cd41c0c
a21de06
afd2199
e2522a6
0e929df
e207c04
0e929df
7d480ef
 
34a9259
0e929df
a149ef2
 
34a9259
7d480ef
08528b3
8db8164
 
22e7a27
 
 
 
 
 
 
d567440
3e81a23
22e7a27
c76c2fc
7d480ef
91f9212
 
 
43c10eb
91f9212
 
5a730a3
08d7883
8ce2567
91f9212
 
 
 
 
 
 
 
 
 
 
dc17745
 
b6358bf
91f9212
dc17745
91f9212
 
 
 
 
 
 
 
 
0c80e1d
ad26b3a
91f9212
577ab65
 
 
 
7636d13
fbee0b5
 
91f9212
 
 
 
41707d0
91f9212
 
48d9efb
ad26b3a
 
0e929df
0776955
91f9212
7a6038c
91f9212
 
7a6038c
cafc721
91f9212
5a730a3
fbee0b5
a149ef2
86010a2
a149ef2
2c2a363
 
 
 
51921cc
 
 
 
 
 
3bab51d
a149ef2
 
fbee0b5
41707d0
92499cd
fbee0b5
92499cd
31fdeeb
c76c2fc
dc17745
 
fe45079
a149ef2
 
 
 
fe45079
0c80e1d
 
 
92499cd
91f9212
48d9efb
0c80e1d
 
a149ef2
0e5fb59
 
92499cd
 
91f9212
0c80e1d
 
 
a149ef2
92499cd
 
0e929df
92499cd
 
 
 
 
31fdeeb
 
 
 
6b7f67c
22e7a27
 
 
 
 
 
 
 
 
91f9212
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
# Pose inferencing
import mmpose
from mmpose.apis import MMPoseInferencer

# Ultralytics
from ultralytics import YOLO
import torch

# Gradio
import gradio as gr

# System and files
import os
import glob
import uuid

# Image manipulation
import numpy as np
import cv2

print("[INFO]: Imported modules!")
human = MMPoseInferencer("human")
hand = MMPoseInferencer("hand") #kpt_thr (float) – The threshold to visualize the keypoints. Defaults to 0.3
human3d = MMPoseInferencer(pose3d="human3d")
track_model = YOLO('yolov8n.pt')  # Load an official Detect model

# ultraltics

# [INFO] VIDEO INPUT:  /tmp/gradio/927601b660ec45919366ce37df1ed004a1fcffab/sample_flip.webm

# Defining inferencer models to lookup in function
inferencers = {"Estimate human 2d poses":human, "Estimate human 2d hand poses":hand, "Estimate human 3d poses":human3d, "Detect and track":track_model}

print("[INFO]: Downloaded models!")

def tracking(video, model, boxes=True):
    print("[INFO] Loading model...")
    # Load an official or custom model

    # Perform tracking with the model
    print("[INFO] Starting tracking!")
    # https://docs.ultralytics.com/modes/predict/
    annotated_frame = model(video, boxes=boxes)

    return annotated_frame

def show_tracking(video_content, vis_out_dir, model):
        video = cv2.VideoCapture(video_content)

        # Track
        video_track = tracking(video_content, model.track)

        # Prepare to save video
        #out_file = os.path.join(vis_out_dir, "track.mp4")
        out_file = "track.mp4"
        print("[INFO]: TRACK", out_file)

        fourcc = cv2.VideoWriter_fourcc(*"mp4v")  # Codec for MP4 video
        fps = video.get(cv2.CAP_PROP_FPS)
        height, width, _ = video_track[0][0].orig_img.shape
        size = (width,height)

        out_track = cv2.VideoWriter(out_file, fourcc, fps, size)

        # Go through frames and write them 
        for frame_track in video_track:
            result_track = frame_track[0].plot()  # plot a BGR numpy array of predictions
            out_track.write(result_track)
        
        print("[INFO] Done with frames")
        #print(type(result_pose)) numpy ndarray
            

        out_track.release()

        video.release()
        cv2.destroyAllWindows() # Closing window

        return out_file


def poses(inferencer, video, vis_out_dir, kpt_thr):
    print("[INFO] VIDEO INPUT: ", video)
    result_generator = inferencer(video, 
                                 vis_out_dir = vis_out_dir,
                                 return_vis=True,
                                 thickness=2,
                                 rebase_keypoint_height=True,
                                 #kpt_thr=kpt_thr,
                                 device="cuda"
                                 )    
    
    result = [result for result in result_generator] #next(result_generator)    

    out_file = glob.glob(os.path.join(vis_out_dir, "*.mp4"))

    return out_file

def infer(video, check, kpt_thr, webcam=True):
    print("[INFO] VIDEO INPUT: ", video)

    # Selecting the specific inferencer
    out_files=[]

    for i in check:
         # Create out directory
        vis_out_dir = str(uuid.uuid4())
        inferencer = inferencers[i] # 'hand', 'human , device='cuda'

        if i == "Detect and track":
            #continue
            trackfile = show_tracking(video, vis_out_dir, inferencer)
           
        else:
            if webcam==True:
                add_dir = str(uuid.uuid4())
                vidname = video.split("/")[-1]
                vis_out_dir = "/".join(["/".join(video.split("/")[:-1]), add_dir])
                out_file = poses(inferencer, video, vis_out_dir, kpt_thr)    
                fullname = os.path.join(vis_out_dir, vidname)         
                if i == "Estimate human 3d poses":     
                    fullname = fullname[:-4]+"mp4" #Change to .mp4                                                                                                                       
                    out_files.append(fullname)
                else:
                    out_files.append(fullname)

            else:
                out_files.extend(out_file)
        
        print(out_files)

    return "track.mp4", out_files[0], out_files[1], out_files[2] # out_files[3]

def run():
    #https://github.com/open-mmlab/mmpose/blob/main/docs/en/user_guides/inference.md
    check_web =  gr.CheckboxGroup(choices = ["Detect and track", "Estimate human 2d poses", "Estimate human 2d hand poses", "Estimate human 3d poses"], label="Methods", type="value", info="Select the model(s) you want")
    check_file = gr.CheckboxGroup(choices = ["Detect and track", "Estimate human 2d poses", "Estimate human 2d hand poses", "Estimate human 3d poses"], label="Methods", type="value", info="Select the model(s) you want")
    
    description = """
    \n\nHere you can upload videos or record one with your webcam and track objects or detect bodyposes in 2d and 3d. 
    """

    # Insert slider with kpt_thr
    web_kpthr = gr.Slider(0, 1, value=0.3)
    file_kpthr = gr.Slider(0, 1, value=0.3)
    
    webcam = gr.Interface(
        fn=infer,
        inputs= [gr.Video(source="webcam", height=512), check_web, web_kpthr], # /tmp/gradio/927601b660ec45919366ce37df1ed004a1fcffab/sample_flip.webm
        outputs = [gr.Video(format='mp4', height=512, label="Detect and track", show_label=True), gr.PlayableVideo(height=512,  label = "Estimate human 2d poses", show_label=True), gr.PlayableVideo(height=512, label = "Estimate human 2d hand poses", show_label=True), gr.PlayableVideo(height=512, label = "Estimate human 3d poses", show_label=True)],
        title = 'Tracking and pose estimation', 
        description = description,
        allow_flagging=False
        )

    file = gr.Interface(
        infer,
        inputs = [gr.Video(source="upload", height=512), check_file, file_kpthr],
        outputs = [gr.Video(format='mp4', height=512, label="Detect and track", show_label=True), gr.PlayableVideo(height=512,  label = "Estimate human 2d poses", show_label=True), gr.PlayableVideo(height=512, label = "Estimate human 2d hand poses", show_label=True), gr.PlayableVideo(height=512, label = "Estimate human 3d poses", show_label=True)],
        title = 'Tracking and pose estimation', 
        description = description,
        allow_flagging=False
    )

    demo = gr.TabbedInterface(
            interface_list=[file, webcam],
            tab_names=["From a File", "From your Webcam"]
        )

    demo.launch(server_name="0.0.0.0", server_port=7860)


if __name__ == "__main__":
    run()

# https://github.com/open-mmlab/mmpose/tree/dev-1.x/configs/body_3d_keypoint/pose_lift
# motionbert_ft_h36m-d80af323_20230531.pth
# simple3Dbaseline_h36m-f0ad73a4_20210419.pth
# videopose_h36m_243frames_fullconv_supervised_cpn_ft-88f5abbb_20210527.pth
# videopose_h36m_81frames_fullconv_supervised-1f2d1104_20210527.pth
# videopose_h36m_27frames_fullconv_supervised-fe8fbba9_20210527.pth
# videopose_h36m_1frame_fullconv_supervised_cpn_ft-5c3afaed_20210527.pth
# https://github.com/open-mmlab/mmpose/blob/main/mmpose/apis/inferencers/pose3d_inferencer.py


# 00000.mp4
# 000000.mp4