File size: 7,213 Bytes
34a9259 afd2199 34a9259 22e7a27 91f9212 59f93ed 22e7a27 34a9259 afd2199 34a9259 cd41c0c a21de06 afd2199 e2522a6 0e929df e207c04 0e929df 7d480ef 34a9259 0e929df a149ef2 34a9259 7d480ef 08528b3 8db8164 22e7a27 d567440 3e81a23 22e7a27 c76c2fc 7d480ef 91f9212 43c10eb 91f9212 5a730a3 08d7883 8ce2567 91f9212 dc17745 b6358bf 91f9212 dc17745 91f9212 0c80e1d ad26b3a 91f9212 577ab65 7636d13 fbee0b5 91f9212 41707d0 91f9212 48d9efb ad26b3a 0e929df 0776955 91f9212 7a6038c 91f9212 7a6038c cafc721 91f9212 5a730a3 fbee0b5 a149ef2 86010a2 a149ef2 2c2a363 51921cc 3bab51d a149ef2 fbee0b5 41707d0 92499cd fbee0b5 92499cd 31fdeeb c76c2fc dc17745 fe45079 a149ef2 fe45079 0c80e1d 92499cd 91f9212 48d9efb 0c80e1d a149ef2 0e5fb59 92499cd 91f9212 0c80e1d a149ef2 92499cd 0e929df 92499cd 31fdeeb 6b7f67c 22e7a27 91f9212 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
# Pose inferencing
import mmpose
from mmpose.apis import MMPoseInferencer
# Ultralytics
from ultralytics import YOLO
import torch
# Gradio
import gradio as gr
# System and files
import os
import glob
import uuid
# Image manipulation
import numpy as np
import cv2
print("[INFO]: Imported modules!")
human = MMPoseInferencer("human")
hand = MMPoseInferencer("hand") #kpt_thr (float) – The threshold to visualize the keypoints. Defaults to 0.3
human3d = MMPoseInferencer(pose3d="human3d")
track_model = YOLO('yolov8n.pt') # Load an official Detect model
# ultraltics
# [INFO] VIDEO INPUT: /tmp/gradio/927601b660ec45919366ce37df1ed004a1fcffab/sample_flip.webm
# Defining inferencer models to lookup in function
inferencers = {"Estimate human 2d poses":human, "Estimate human 2d hand poses":hand, "Estimate human 3d poses":human3d, "Detect and track":track_model}
print("[INFO]: Downloaded models!")
def tracking(video, model, boxes=True):
print("[INFO] Loading model...")
# Load an official or custom model
# Perform tracking with the model
print("[INFO] Starting tracking!")
# https://docs.ultralytics.com/modes/predict/
annotated_frame = model(video, boxes=boxes)
return annotated_frame
def show_tracking(video_content, vis_out_dir, model):
video = cv2.VideoCapture(video_content)
# Track
video_track = tracking(video_content, model.track)
# Prepare to save video
#out_file = os.path.join(vis_out_dir, "track.mp4")
out_file = "track.mp4"
print("[INFO]: TRACK", out_file)
fourcc = cv2.VideoWriter_fourcc(*"mp4v") # Codec for MP4 video
fps = video.get(cv2.CAP_PROP_FPS)
height, width, _ = video_track[0][0].orig_img.shape
size = (width,height)
out_track = cv2.VideoWriter(out_file, fourcc, fps, size)
# Go through frames and write them
for frame_track in video_track:
result_track = frame_track[0].plot() # plot a BGR numpy array of predictions
out_track.write(result_track)
print("[INFO] Done with frames")
#print(type(result_pose)) numpy ndarray
out_track.release()
video.release()
cv2.destroyAllWindows() # Closing window
return out_file
def poses(inferencer, video, vis_out_dir, kpt_thr):
print("[INFO] VIDEO INPUT: ", video)
result_generator = inferencer(video,
vis_out_dir = vis_out_dir,
return_vis=True,
thickness=2,
rebase_keypoint_height=True,
#kpt_thr=kpt_thr,
device="cuda"
)
result = [result for result in result_generator] #next(result_generator)
out_file = glob.glob(os.path.join(vis_out_dir, "*.mp4"))
return out_file
def infer(video, check, kpt_thr, webcam=True):
print("[INFO] VIDEO INPUT: ", video)
# Selecting the specific inferencer
out_files=[]
for i in check:
# Create out directory
vis_out_dir = str(uuid.uuid4())
inferencer = inferencers[i] # 'hand', 'human , device='cuda'
if i == "Detect and track":
#continue
trackfile = show_tracking(video, vis_out_dir, inferencer)
else:
if webcam==True:
add_dir = str(uuid.uuid4())
vidname = video.split("/")[-1]
vis_out_dir = "/".join(["/".join(video.split("/")[:-1]), add_dir])
out_file = poses(inferencer, video, vis_out_dir, kpt_thr)
fullname = os.path.join(vis_out_dir, vidname)
if i == "Estimate human 3d poses":
fullname = fullname[:-4]+"mp4" #Change to .mp4
out_files.append(fullname)
else:
out_files.append(fullname)
else:
out_files.extend(out_file)
print(out_files)
return "track.mp4", out_files[0], out_files[1], out_files[2] # out_files[3]
def run():
#https://github.com/open-mmlab/mmpose/blob/main/docs/en/user_guides/inference.md
check_web = gr.CheckboxGroup(choices = ["Detect and track", "Estimate human 2d poses", "Estimate human 2d hand poses", "Estimate human 3d poses"], label="Methods", type="value", info="Select the model(s) you want")
check_file = gr.CheckboxGroup(choices = ["Detect and track", "Estimate human 2d poses", "Estimate human 2d hand poses", "Estimate human 3d poses"], label="Methods", type="value", info="Select the model(s) you want")
description = """
\n\nHere you can upload videos or record one with your webcam and track objects or detect bodyposes in 2d and 3d.
"""
# Insert slider with kpt_thr
web_kpthr = gr.Slider(0, 1, value=0.3)
file_kpthr = gr.Slider(0, 1, value=0.3)
webcam = gr.Interface(
fn=infer,
inputs= [gr.Video(source="webcam", height=512), check_web, web_kpthr], # /tmp/gradio/927601b660ec45919366ce37df1ed004a1fcffab/sample_flip.webm
outputs = [gr.Video(format='mp4', height=512, label="Detect and track", show_label=True), gr.PlayableVideo(height=512, label = "Estimate human 2d poses", show_label=True), gr.PlayableVideo(height=512, label = "Estimate human 2d hand poses", show_label=True), gr.PlayableVideo(height=512, label = "Estimate human 3d poses", show_label=True)],
title = 'Tracking and pose estimation',
description = description,
allow_flagging=False
)
file = gr.Interface(
infer,
inputs = [gr.Video(source="upload", height=512), check_file, file_kpthr],
outputs = [gr.Video(format='mp4', height=512, label="Detect and track", show_label=True), gr.PlayableVideo(height=512, label = "Estimate human 2d poses", show_label=True), gr.PlayableVideo(height=512, label = "Estimate human 2d hand poses", show_label=True), gr.PlayableVideo(height=512, label = "Estimate human 3d poses", show_label=True)],
title = 'Tracking and pose estimation',
description = description,
allow_flagging=False
)
demo = gr.TabbedInterface(
interface_list=[file, webcam],
tab_names=["From a File", "From your Webcam"]
)
demo.launch(server_name="0.0.0.0", server_port=7860)
if __name__ == "__main__":
run()
# https://github.com/open-mmlab/mmpose/tree/dev-1.x/configs/body_3d_keypoint/pose_lift
# motionbert_ft_h36m-d80af323_20230531.pth
# simple3Dbaseline_h36m-f0ad73a4_20210419.pth
# videopose_h36m_243frames_fullconv_supervised_cpn_ft-88f5abbb_20210527.pth
# videopose_h36m_81frames_fullconv_supervised-1f2d1104_20210527.pth
# videopose_h36m_27frames_fullconv_supervised-fe8fbba9_20210527.pth
# videopose_h36m_1frame_fullconv_supervised_cpn_ft-5c3afaed_20210527.pth
# https://github.com/open-mmlab/mmpose/blob/main/mmpose/apis/inferencers/pose3d_inferencer.py
# 00000.mp4
# 000000.mp4 |