File size: 6,607 Bytes
3bbef49 34a9259 afd2199 34a9259 22e7a27 91f9212 59f93ed 22e7a27 34a9259 afd2199 34a9259 cd41c0c a21de06 afd2199 e2522a6 0e929df 3bbef49 0e929df 7d480ef 34a9259 0e929df 34a9259 7d480ef 08528b3 8db8164 22e7a27 d567440 3e81a23 22e7a27 c76c2fc 3bbef49 91f9212 3bbef49 91f9212 5a730a3 08d7883 8ce2567 91f9212 b6358bf 91f9212 3bbef49 91f9212 3bbef49 577ab65 3bbef49 91f9212 3bbef49 41707d0 91f9212 92499cd 3bbef49 92499cd 3bbef49 fe45079 3bbef49 a149ef2 3bbef49 0c80e1d 3bbef49 92499cd 3bbef49 0e929df 3bbef49 92499cd 31fdeeb 3bbef49 22e7a27 3bbef49 91f9212 3bbef49 91f9212 3bbef49 97f0668 3bbef49 97f0668 3bbef49 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
# Pose inferencing
import mmpose
from mmpose.apis import MMPoseInferencer
# Ultralytics
from ultralytics import YOLO
import torch
# Gradio
import gradio as gr
# System and files
import os
import glob
import uuid
# Image manipulation
import numpy as np
import cv2
print("[INFO]: Imported modules!")
human = MMPoseInferencer("human")
hand = MMPoseInferencer("hand")
human3d = MMPoseInferencer(pose3d="human3d")
track_model = YOLO('yolov8n.pt') # Load an official Detect model
# ultraltics
# Defining inferencer models to lookup in function
inferencers = {"Estimate human 2d poses":human, "Estimate human 2d hand poses":hand, "Estimate human 3d poses":human3d, "Detect and track":track_model}
print("[INFO]: Downloaded models!")
def tracking(video, model, boxes=True):
print("[INFO] Loading model...")
# Load an official or custom model
# Perform tracking with the model
print("[INFO] Starting tracking!")
# https://docs.ultralytics.com/modes/predict/
annotated_frame = model(video, boxes=boxes)
return annotated_frame
def show_tracking(video_content):
video = cv2.VideoCapture(video_content)
# Track
video_track = tracking(video_content, track_model.track)
# Prepare to save video
#out_file = os.path.join(vis_out_dir, "track.mp4")
out_file = "track.mp4"
print("[INFO]: TRACK", out_file)
fourcc = cv2.VideoWriter_fourcc(*"mp4v") # Codec for MP4 video
fps = video.get(cv2.CAP_PROP_FPS)
height, width, _ = video_track[0][0].orig_img.shape
size = (width,height)
out_track = cv2.VideoWriter(out_file, fourcc, fps, size)
# Go through frames and write them
for frame_track in video_track:
result_track = frame_track[0].plot() # plot a BGR numpy array of predictions
print("[INFO] Done with frames")
#print(type(result_pose)) numpy ndarray
out_track.write(result_track)
out_track.release()
video.release()
cv2.destroyAllWindows() # Closing window
return out_file
def pose3d(video):
add_dir = str(uuid.uuid4())
#vidname = video.split("/")[-1]
vis_out_dir = "/".join(["/".join(video.split("/")[:-1]), add_dir])
print("[INFO]: CURRENT OUT DIR: ", vis_out_dir)
#full name = os.path.join(vis_out_dir, vidname)
result_generator = human3d(video,
vis_out_dir = vis_out_dir,
thickness=2,
rebase_keypoint_height=True,
device="cuda")
result = [result for result in result_generator] #next(result_generator)
out_file = glob.glob(os.path.join(vis_out_dir, "*"))
print("[INFO]: CURRENT OUT FILE NAME: ", out_file)
return out_file
def pose2d(video):
add_dir = str(uuid.uuid4())
vis_out_dir = "/".join(["/".join(video.split("/")[:-1]), add_dir])
print("[INFO]: CURRENT OUT DIR: ", vis_out_dir)
result_generator = human(video,
vis_out_dir = vis_out_dir,
thickness=2,
rebase_keypoint_height=True,
device="cuda")
result = [result for result in result_generator] #next(result_generator)
out_file = glob.glob(os.path.join(vis_out_dir, "*"))
print("[INFO]: CURRENT OUT FILE NAME: ", out_file)
return out_file
def pose2dhand(video):
add_dir = str(uuid.uuid4())
vis_out_dir = "/".join(["/".join(video.split("/")[:-1]), add_dir])
print("[INFO]: CURRENT OUT DIR: ", vis_out_dir)
vis_out_dir = str(uuid.uuid4())
result_generator = hand(video,
vis_out_dir = vis_out_dir,
thickness=2,
rebase_keypoint_height=True,
device="cuda")
result = [result for result in result_generator] #next(result_generator)
out_file = glob.glob(os.path.join(vis_out_dir, "*"))
print("[INFO]: CURRENT OUT FILE NAME: ", out_file)
return out_file
with gr.Blocks() as demo:
with gr.Column():
with gr.Tab("Upload video"):
with gr.Row():
with gr.Column():
video_input = gr.Video(source="upload", type="filepath", height=512)
submit_pose_file = gr.Button("Make 2d pose estimation")
submit_pose3d_file = gr.Button("Make 3d pose estimation")
submit_hand_file = gr.Button("Make 2d hand estimation")
submit_detect_file = gr.Button("Detect and track objects")
video_output = gr.Video(height=512)
with gr.Tab("Record video with webcam"):
with gr.Row():
with gr.Column():
webcam_input = gr.Video(source="webcam", height=512)
submit_pose_web = gr.Button("Make 2d pose estimation")
submit_pose3d_web = gr.Button("Make 3d pose estimation")
submit_hand_web = gr.Button("Make 2d hand estimation")
submit_detect_web = gr.Button("Detect and track objects")
webcam_output = gr.Video(height=512)
# From file
submit_pose_file.click(fn=pose2d,
inputs= video_input,
outputs = video_output)
submit_pose3d_file.click(fn=pose3d,
inputs= video_input,
outputs = video_output)
submit_hand_file.click(fn=pose2dhand,
inputs= video_input,
outputs = video_output)
submit_detect_file.click(fn=show_tracking,
inputs= video_input,
outputs = video_output)
# Web
submit_pose_web.click(fn=pose2d,
inputs= video_input,
outputs = video_output)
submit_pose3d_web.click(fn=pose3d,
inputs= video_input,
outputs = video_output)
submit_hand_web.click(fn=pose2dhand,
inputs= video_input,
outputs = video_output)
submit_detect_web.click(fn=show_tracking,
inputs= video_input,
outputs = video_output)
demo.launch() |