File size: 17,098 Bytes
e5b70eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
import os

import torch
import torch.nn as nn
import torch.optim as optim
import wandb
from torch.utils.data import DataLoader
from torchvision import transforms
from tqdm import tqdm

from data.LQGT_dataset import LQGTDataset, LQGTValDataset
from model import decoder, discriminator, encoder
from opt.option import args
from util.utils import (RandCrop, RandHorizontalFlip, RandRotate, ToTensor, RandCrop_pair,
                        VGG19PerceptualLoss)

from torchmetrics import PeakSignalNoiseRatio, StructuralSimilarityIndexMeasure
from torchmetrics.image.lpip import LearnedPerceptualImagePatchSimilarity

wandb.init(project='SR', config=args)



# device setting
if args.gpu_id is not None:
    os.environ['CUDA_VISIBLE_DEVICES'] = "0"
    print('using GPU 0')
else:
    print('use --gpu_id to specify GPU ID to use')
    exit()

device = torch.device('cuda')

# make directory for saving weights
if not os.path.exists(args.snap_path):
    os.mkdir(args.snap_path)

print("Loading dataset...")
# load training dataset
train_dataset = LQGTDataset(
    db_path=args.dir_data,
    transform=transforms.Compose([RandCrop(args.patch_size, args.scale), RandHorizontalFlip(), RandRotate(), ToTensor()])
)

val_dataset = LQGTValDataset(
    db_path=args.dir_data,
    transform=transforms.Compose([RandCrop_pair(args.patch_size, args.scale), ToTensor()])
)

train_loader = DataLoader(
    train_dataset,
    batch_size=args.batch_size,
    num_workers=args.num_workers,
    drop_last=True,
    shuffle=True
)

val_loader = DataLoader(
    val_dataset,
    batch_size=args.batch_size,
    num_workers=args.num_workers,
    shuffle=False
)


print("Create model")
model_Disc_feat = discriminator.DiscriminatorVGG(in_ch=args.n_hidden_feats, image_size=args.patch_size).to(device)
model_Disc_img_LR = discriminator.DiscriminatorVGG(in_ch=3, image_size=args.patch_size).to(device)
model_Disc_img_HR = discriminator.DiscriminatorVGG(in_ch=3, image_size=args.scale*args.patch_size).to(device)
# define model (generator)
model_Enc = encoder.Encoder_RRDB(num_feat=args.n_hidden_feats).to(device)
model_Dec_Id = decoder.Decoder_Id_RRDB(num_in_ch=args.n_hidden_feats).to(device)
model_Dec_SR = decoder.Decoder_SR_RRDB(num_in_ch=args.n_hidden_feats).to(device)

# define model (discriminator)

# model_Disc_feat = discriminator.UNetDiscriminator(num_in_ch=64).to(device)
# model_Disc_img_LR = discriminator.UNetDiscriminator(num_in_ch=3).to(device)
# model_Disc_img_HR = discriminator.UNetDiscriminator(num_in_ch=3).to(device)

# wandb logging
wandb.watch(model_Disc_feat)
wandb.watch(model_Disc_img_LR)
wandb.watch(model_Enc)
wandb.watch(model_Dec_Id)
wandb.watch(model_Dec_SR)


print("Define Loss")
# loss
loss_L1 = nn.L1Loss().to(device)
loss_MSE = nn.MSELoss().to(device)
loss_adversarial = nn.BCEWithLogitsLoss().to(device)
loss_percept = VGG19PerceptualLoss().to(device)


print("Define Optimizer")
# optimizer 
params_G = list(model_Enc.parameters()) + list(model_Dec_Id.parameters()) + list(model_Dec_SR.parameters())
optimizer_G = optim.Adam(
    params_G,
    lr=args.lr_G,
    betas=(args.beta1, args.beta2),
    weight_decay=args.weight_decay,
    amsgrad=True
)
params_D = list(model_Disc_feat.parameters()) + list(model_Disc_img_LR.parameters()) + list(model_Disc_img_HR.parameters())
optimizer_D = optim.Adam(
    params_D,
    lr=args.lr_D,
    betas=(args.beta1, args.beta2),
    weight_decay=args.weight_decay,
    amsgrad=True
)

print("Define Scheduler")
# Scheduler
iter_indices = [args.interval1, args.interval2, args.interval3]
scheduler_G = optim.lr_scheduler.MultiStepLR(
    optimizer=optimizer_G,
    milestones=iter_indices,
    gamma=0.5
)
scheduler_D = optim.lr_scheduler.MultiStepLR(
    optimizer=optimizer_D,
    milestones=iter_indices,
    gamma=0.5
)

# print("Data Parallel")
model_Enc = nn.DataParallel(model_Enc)
model_Dec_Id = nn.DataParallel(model_Dec_Id)
model_Dec_SR = nn.DataParallel(model_Dec_SR)

# define model (discriminator)
#model_Disc_feat = nn.DataParallel(model_Disc_feat)
#model_Disc_img_LR = nn.DataParallel(model_Disc_img_LR)
#model_Disc_img_HR = nn.DataParallel(model_Disc_img_HR)

print("Load model weight")
# load model weights & optimzer % scheduler
if args.checkpoint is not None:
    checkpoint = torch.load(args.checkpoint)

    model_Enc.load_state_dict(checkpoint['model_Enc'])
    model_Dec_Id.load_state_dict(checkpoint['model_Dec_Id'])
    model_Dec_SR.load_state_dict(checkpoint['model_Dec_SR'])
    model_Disc_feat.load_state_dict(checkpoint['model_Disc_feat'])
    model_Disc_img_LR.load_state_dict(checkpoint['model_Disc_img_LR'])
    model_Disc_img_HR.load_state_dict(checkpoint['model_Disc_img_HR'])

    optimizer_D.load_state_dict(checkpoint['optimizer_D'])
    optimizer_G.load_state_dict(checkpoint['optimizer_G'])

    scheduler_D.load_state_dict(checkpoint['scheduler_D'])
    scheduler_G.load_state_dict(checkpoint['scheduler_G'])

    start_epoch = checkpoint['epoch']
else:
    start_epoch = 0


if args.pretrained is not None:
    ckpt = torch.load(args.pretrained)
    ckpt["params"]["conv_first.weight"] = ckpt["params"]["conv_first.weight"][:,0,:,:].expand(64,64,3,3)
    model_Dec_SR.load_state_dict(ckpt["params"])
    






# model_Enc = model_Enc.to(device)
# model_Dec_Id = model_Dec_Id.to(device)
# model_Dec_SR = model_Dec_SR.to(device)

# # define model (discriminator)
# model_Disc_feat = model_Disc_feat.to(device)
# model_Disc_img_LR = model_Disc_img_LR.to(device)
# model_Disc_img_HR =model_Disc_img_HR.to(device)
# training

PSNR = PeakSignalNoiseRatio().to(device)
SSIM = StructuralSimilarityIndexMeasure().to(device)
LPIPS = LearnedPerceptualImagePatchSimilarity().to(device)

if args.phase == "train":
  for epoch in range(start_epoch, args.epochs):
      # generator
      model_Enc.train()
      model_Dec_Id.train()
      model_Dec_SR.train()

      # discriminator
      model_Disc_feat.train()
      model_Disc_img_LR.train()
      model_Disc_img_HR.train()
      
      running_loss_D_total = 0.0
      running_loss_G_total = 0.0

      running_loss_align = 0.0
      running_loss_rec = 0.0
      running_loss_res = 0.0
      running_loss_sty = 0.0
      running_loss_idt = 0.0
      running_loss_cyc = 0.0

      iter = 0    

      for data in tqdm(train_loader):
          iter += 1

          ########################
          #       data load      #
          ########################
          X_t, Y_s = data['img_LQ'], data['img_GT']

          ds4 = nn.Upsample(scale_factor=1/args.scale, mode='bicubic')
          X_s = ds4(Y_s)

          X_t = X_t.cuda(non_blocking=True)
          X_s = X_s.cuda(non_blocking=True)
          Y_s = Y_s.cuda(non_blocking=True)

          # real label and fake label
          batch_size = X_t.size(0)
          real_label = torch.full((batch_size, 1), 1, dtype=X_t.dtype).cuda(non_blocking=True)
          fake_label = torch.full((batch_size, 1), 0, dtype=X_t.dtype).cuda(non_blocking=True)


          ########################
          # (1) Update D network #
          ########################
          model_Disc_feat.zero_grad()
          model_Disc_img_LR.zero_grad()
          model_Disc_img_HR.zero_grad()

          for i in range(args.n_disc):
              # generator output (feature domain)
              F_t = model_Enc(X_t)
              F_s = model_Enc(X_s)

              # 1. feature aligment loss (discriminator)
              # output of discriminator (feature domain) (b x c(=1) x h x w)
              output_Disc_F_t = model_Disc_feat(F_t.detach())
              output_Disc_F_s = model_Disc_feat(F_s.detach())
              # discriminator loss (feature domain)
              loss_Disc_F_t = loss_MSE(output_Disc_F_t, fake_label)
              loss_Disc_F_s = loss_MSE(output_Disc_F_s, real_label)
              loss_Disc_feat_align = (loss_Disc_F_t + loss_Disc_F_s) / 2

              # 2. SR reconstruction loss (discriminator)
              # generator output (image domain)
              Y_s_s = model_Dec_SR(F_s)
              # output of discriminator (image domain)
              output_Disc_Y_s_s = model_Disc_img_HR(Y_s_s.detach())
              output_Disc_Y_s = model_Disc_img_HR(Y_s)
              # discriminator loss (image domain)
              loss_Disc_Y_s_s = loss_MSE(output_Disc_Y_s_s, fake_label)
              loss_Disc_Y_s = loss_MSE(output_Disc_Y_s, real_label)
              loss_Disc_img_rec = (loss_Disc_Y_s_s + loss_Disc_Y_s) / 2

              # 4. Target degradation style loss
              # generator output (image domain)
              X_s_t = model_Dec_Id(F_s)
              # output of discriminator (image domain)
              output_Disc_X_s_t = model_Disc_img_LR(X_s_t.detach())
              output_Disc_X_t = model_Disc_img_LR(X_t)
              # discriminator loss (image domain)
              loss_Disc_X_s_t = loss_MSE(output_Disc_X_s_t, fake_label)
              loss_Disc_X_t = loss_MSE(output_Disc_X_t, real_label)
              loss_Disc_img_sty = (loss_Disc_X_s_t + loss_Disc_X_t) / 2

              # 6. Cycle loss
              # generator output (image domain)
              Y_s_t_s = model_Dec_SR(model_Enc(model_Dec_Id(F_s)))
              # output of discriminator (image domain)
              output_Disc_Y_s_t_s = model_Disc_img_HR(Y_s_t_s.detach())
              output_Disc_Y_s = model_Disc_img_HR(Y_s)
              # discriminator loss (image domain)
              loss_Disc_Y_s_t_s = loss_MSE(output_Disc_Y_s_t_s, fake_label)
              loss_Disc_Y_s = loss_MSE(output_Disc_Y_s, real_label)
              loss_Disc_img_cyc = (loss_Disc_Y_s_t_s + loss_Disc_Y_s) / 2

              # discriminator weight update
              loss_D_total = loss_Disc_feat_align + loss_Disc_img_rec + loss_Disc_img_sty + loss_Disc_img_cyc
              loss_D_total.backward()
              optimizer_D.step()



          scheduler_D.step()


          ########################
          # (2) Update G network #
          ########################
          model_Enc.zero_grad()
          model_Dec_Id.zero_grad()
          model_Dec_SR.zero_grad()

          for i in range(args.n_gen):
              # generator output (feature domain)
              F_t = model_Enc(X_t)
              F_s = model_Enc(X_s)

              # 1. feature alignment loss (generator)
              # output of discriminator (feature domain)
              output_Disc_F_t = model_Disc_feat(F_t)
              output_Disc_F_s = model_Disc_feat(F_s)
              # generator loss (feature domain)
              loss_G_F_t = loss_MSE(output_Disc_F_t, (real_label + fake_label)/2)
              loss_G_F_s = loss_MSE(output_Disc_F_s, (real_label + fake_label)/2)
              L_align_E = loss_G_F_t + loss_G_F_s

              # 2. SR reconstruction loss
              # generator output (image domain)
              Y_s_s = model_Dec_SR(F_s)
              # output of discriminator (image domain)
              output_Disc_Y_s_s = model_Disc_img_HR(Y_s_s)
              # L1 loss
              loss_L1_rec = loss_L1(Y_s.detach(), Y_s_s)
              # perceptual loss
              loss_percept_rec = loss_percept(Y_s.detach(), Y_s_s)
              # adversatial loss
              loss_G_Y_s_s = loss_MSE(output_Disc_Y_s_s, real_label)
              L_rec_G_SR = loss_L1_rec + args.lambda_percept*loss_percept_rec + args.lambda_adv*loss_G_Y_s_s

              # 3. Target LR restoration loss
              X_t_t = model_Dec_Id(F_t)
              L_res_G_t = loss_L1(X_t, X_t_t)

              # 4. Target degredation style loss
              # generator output (image domain)
              X_s_t = model_Dec_Id(F_s)
              # output of discriminator (img domain)
              output_Disc_X_s_t = model_Disc_img_LR(X_s_t)
              # generator loss (feature domain)
              loss_G_X_s_t = loss_MSE(output_Disc_X_s_t, real_label)
              L_sty_G_t = loss_G_X_s_t

              # 5. Feature identity loss
              F_s_tilda = model_Enc(model_Dec_Id(F_s))
              L_idt_G_t = loss_L1(F_s, F_s_tilda)

              # 6. Cycle loss
              # generator output (image domain)
              Y_s_t_s = model_Dec_SR(model_Enc(model_Dec_Id(F_s)))
              # output of discriminator (image domain)
              output_Disc_Y_s_t_s = model_Disc_img_HR(Y_s_t_s)
              # L1 loss
              loss_L1_cyc = loss_L1(Y_s.detach(), Y_s_t_s)
              # perceptual loss
              loss_percept_cyc = loss_percept(Y_s.detach(), Y_s_t_s)
              # adversarial loss 
              loss_Y_s_t_s = loss_MSE(output_Disc_Y_s_t_s, real_label)
              L_cyc_G_t_G_SR = loss_L1_cyc + args.lambda_percept*loss_percept_cyc + args.lambda_adv*loss_Y_s_t_s

              # generator weight update
              loss_G_total = args.lambda_align*L_align_E + args.lambda_rec*L_rec_G_SR + args.lambda_res*L_res_G_t + args.lambda_sty*L_sty_G_t + args.lambda_idt*L_idt_G_t + args.lambda_cyc*L_cyc_G_t_G_SR
              loss_G_total.backward()
              optimizer_G.step()
          scheduler_G.step()


          ########################
          #     compute loss     #
          ########################
          running_loss_D_total += loss_D_total.item()
          running_loss_G_total += loss_G_total.item()

          running_loss_align += L_align_E.item()
          running_loss_rec += L_rec_G_SR.item()
          running_loss_res += L_res_G_t.item()
          running_loss_sty += L_sty_G_t.item()
          running_loss_idt += L_idt_G_t.item()
          running_loss_cyc += L_cyc_G_t_G_SR.item()
          if iter % args.log_interval == 0:
              wandb.log(
                  {
                      "loss_D_total_step": running_loss_D_total/iter,
                      "loss_G_total_step": running_loss_G_total/iter,
                      "loss_align_step": running_loss_align/iter,
                      "loss_rec_step": running_loss_rec/iter,
                      "loss_res_step": running_loss_res/iter,
                      "loss_sty_step": running_loss_sty/iter,
                      "loss_idt_step": running_loss_idt/iter,
                      "loss_cyc_step": running_loss_cyc/iter,
                  }
              )
      ### EVALUATE ###
      total_PSNR = 0
      total_SSIM = 0
      total_LPIPS = 0
      val_iter = 0
      with torch.no_grad():
          model_Enc.eval()
          model_Dec_SR.eval()
          for batch_idx, batch in enumerate(val_loader):
              val_iter += 1
              source = batch["img_LQ"].to(device)
              target = batch["img_GT"].to(device)

              feat = model_Enc(source)
              out = model_Dec_SR(feat)

              total_PSNR += PSNR(out, target)
              total_SSIM += SSIM(out, target)
              total_LPIPS += LPIPS(out, target)
      
      wandb.log(
          {
              "epoch": epoch,
              "lr": optimizer_G.param_groups[0]['lr'],
              "loss_D_total_epoch": running_loss_D_total/iter,
              "loss_G_total_epoch": running_loss_G_total/iter,
              "loss_align_epoch": running_loss_align/iter,
              "loss_rec_epoch": running_loss_rec/iter,
              "loss_res_epoch": running_loss_res/iter,
              "loss_sty_epoch": running_loss_sty/iter,
              "loss_idt_epoch": running_loss_idt/iter,
              "loss_cyc_epoch": running_loss_cyc/iter,
              "PSNR_val": total_PSNR/val_iter,
              "SSIM_val": total_SSIM/val_iter,
              "LPIPS_val": total_LPIPS/val_iter
          }
      )


      if (epoch+1) % args.save_freq == 0:
          weights_file_name = 'epoch_%d.pth' % (epoch+1)
          weights_file = os.path.join(args.snap_path, weights_file_name)
          torch.save({
              'epoch': epoch,

              'model_Enc': model_Enc.state_dict(),
              'model_Dec_Id': model_Dec_Id.state_dict(),
              'model_Dec_SR': model_Dec_SR.state_dict(),
              'model_Disc_feat': model_Disc_feat.state_dict(),
              'model_Disc_img_LR': model_Disc_img_LR.state_dict(),
              'model_Disc_img_HR': model_Disc_img_HR.state_dict(),

              'optimizer_D': optimizer_D.state_dict(),
              'optimizer_G': optimizer_G.state_dict(),

              'scheduler_D': scheduler_D.state_dict(),
              'scheduler_G': scheduler_G.state_dict(),
          }, weights_file)
          print('save weights of epoch %d' % (epoch+1))
else:
  ### EVALUATE ###
  total_PSNR = 0
  total_SSIM = 0
  total_LPIPS = 0
  val_iter = 0
  with torch.no_grad():
      model_Enc.eval()
      model_Dec_SR.eval()
      for batch_idx, batch in enumerate(val_loader):
          val_iter += 1
          source = batch["img_LQ"].to(device)
          target = batch["img_GT"].to(device)

          feat = model_Enc(source)
          out = model_Dec_SR(feat)

          total_PSNR += PSNR(out, target)
          total_SSIM += SSIM(out, target)
          total_LPIPS += LPIPS(out, target)
      print("PSNR_val: ", total_PSNR/val_iter)
      print("SSIM_val: ", total_SSIM/val_iter)
      print("LPIPS_val: ", total_LPIPS/val_iter)