File size: 17,098 Bytes
e5b70eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 |
import os
import torch
import torch.nn as nn
import torch.optim as optim
import wandb
from torch.utils.data import DataLoader
from torchvision import transforms
from tqdm import tqdm
from data.LQGT_dataset import LQGTDataset, LQGTValDataset
from model import decoder, discriminator, encoder
from opt.option import args
from util.utils import (RandCrop, RandHorizontalFlip, RandRotate, ToTensor, RandCrop_pair,
VGG19PerceptualLoss)
from torchmetrics import PeakSignalNoiseRatio, StructuralSimilarityIndexMeasure
from torchmetrics.image.lpip import LearnedPerceptualImagePatchSimilarity
wandb.init(project='SR', config=args)
# device setting
if args.gpu_id is not None:
os.environ['CUDA_VISIBLE_DEVICES'] = "0"
print('using GPU 0')
else:
print('use --gpu_id to specify GPU ID to use')
exit()
device = torch.device('cuda')
# make directory for saving weights
if not os.path.exists(args.snap_path):
os.mkdir(args.snap_path)
print("Loading dataset...")
# load training dataset
train_dataset = LQGTDataset(
db_path=args.dir_data,
transform=transforms.Compose([RandCrop(args.patch_size, args.scale), RandHorizontalFlip(), RandRotate(), ToTensor()])
)
val_dataset = LQGTValDataset(
db_path=args.dir_data,
transform=transforms.Compose([RandCrop_pair(args.patch_size, args.scale), ToTensor()])
)
train_loader = DataLoader(
train_dataset,
batch_size=args.batch_size,
num_workers=args.num_workers,
drop_last=True,
shuffle=True
)
val_loader = DataLoader(
val_dataset,
batch_size=args.batch_size,
num_workers=args.num_workers,
shuffle=False
)
print("Create model")
model_Disc_feat = discriminator.DiscriminatorVGG(in_ch=args.n_hidden_feats, image_size=args.patch_size).to(device)
model_Disc_img_LR = discriminator.DiscriminatorVGG(in_ch=3, image_size=args.patch_size).to(device)
model_Disc_img_HR = discriminator.DiscriminatorVGG(in_ch=3, image_size=args.scale*args.patch_size).to(device)
# define model (generator)
model_Enc = encoder.Encoder_RRDB(num_feat=args.n_hidden_feats).to(device)
model_Dec_Id = decoder.Decoder_Id_RRDB(num_in_ch=args.n_hidden_feats).to(device)
model_Dec_SR = decoder.Decoder_SR_RRDB(num_in_ch=args.n_hidden_feats).to(device)
# define model (discriminator)
# model_Disc_feat = discriminator.UNetDiscriminator(num_in_ch=64).to(device)
# model_Disc_img_LR = discriminator.UNetDiscriminator(num_in_ch=3).to(device)
# model_Disc_img_HR = discriminator.UNetDiscriminator(num_in_ch=3).to(device)
# wandb logging
wandb.watch(model_Disc_feat)
wandb.watch(model_Disc_img_LR)
wandb.watch(model_Enc)
wandb.watch(model_Dec_Id)
wandb.watch(model_Dec_SR)
print("Define Loss")
# loss
loss_L1 = nn.L1Loss().to(device)
loss_MSE = nn.MSELoss().to(device)
loss_adversarial = nn.BCEWithLogitsLoss().to(device)
loss_percept = VGG19PerceptualLoss().to(device)
print("Define Optimizer")
# optimizer
params_G = list(model_Enc.parameters()) + list(model_Dec_Id.parameters()) + list(model_Dec_SR.parameters())
optimizer_G = optim.Adam(
params_G,
lr=args.lr_G,
betas=(args.beta1, args.beta2),
weight_decay=args.weight_decay,
amsgrad=True
)
params_D = list(model_Disc_feat.parameters()) + list(model_Disc_img_LR.parameters()) + list(model_Disc_img_HR.parameters())
optimizer_D = optim.Adam(
params_D,
lr=args.lr_D,
betas=(args.beta1, args.beta2),
weight_decay=args.weight_decay,
amsgrad=True
)
print("Define Scheduler")
# Scheduler
iter_indices = [args.interval1, args.interval2, args.interval3]
scheduler_G = optim.lr_scheduler.MultiStepLR(
optimizer=optimizer_G,
milestones=iter_indices,
gamma=0.5
)
scheduler_D = optim.lr_scheduler.MultiStepLR(
optimizer=optimizer_D,
milestones=iter_indices,
gamma=0.5
)
# print("Data Parallel")
model_Enc = nn.DataParallel(model_Enc)
model_Dec_Id = nn.DataParallel(model_Dec_Id)
model_Dec_SR = nn.DataParallel(model_Dec_SR)
# define model (discriminator)
#model_Disc_feat = nn.DataParallel(model_Disc_feat)
#model_Disc_img_LR = nn.DataParallel(model_Disc_img_LR)
#model_Disc_img_HR = nn.DataParallel(model_Disc_img_HR)
print("Load model weight")
# load model weights & optimzer % scheduler
if args.checkpoint is not None:
checkpoint = torch.load(args.checkpoint)
model_Enc.load_state_dict(checkpoint['model_Enc'])
model_Dec_Id.load_state_dict(checkpoint['model_Dec_Id'])
model_Dec_SR.load_state_dict(checkpoint['model_Dec_SR'])
model_Disc_feat.load_state_dict(checkpoint['model_Disc_feat'])
model_Disc_img_LR.load_state_dict(checkpoint['model_Disc_img_LR'])
model_Disc_img_HR.load_state_dict(checkpoint['model_Disc_img_HR'])
optimizer_D.load_state_dict(checkpoint['optimizer_D'])
optimizer_G.load_state_dict(checkpoint['optimizer_G'])
scheduler_D.load_state_dict(checkpoint['scheduler_D'])
scheduler_G.load_state_dict(checkpoint['scheduler_G'])
start_epoch = checkpoint['epoch']
else:
start_epoch = 0
if args.pretrained is not None:
ckpt = torch.load(args.pretrained)
ckpt["params"]["conv_first.weight"] = ckpt["params"]["conv_first.weight"][:,0,:,:].expand(64,64,3,3)
model_Dec_SR.load_state_dict(ckpt["params"])
# model_Enc = model_Enc.to(device)
# model_Dec_Id = model_Dec_Id.to(device)
# model_Dec_SR = model_Dec_SR.to(device)
# # define model (discriminator)
# model_Disc_feat = model_Disc_feat.to(device)
# model_Disc_img_LR = model_Disc_img_LR.to(device)
# model_Disc_img_HR =model_Disc_img_HR.to(device)
# training
PSNR = PeakSignalNoiseRatio().to(device)
SSIM = StructuralSimilarityIndexMeasure().to(device)
LPIPS = LearnedPerceptualImagePatchSimilarity().to(device)
if args.phase == "train":
for epoch in range(start_epoch, args.epochs):
# generator
model_Enc.train()
model_Dec_Id.train()
model_Dec_SR.train()
# discriminator
model_Disc_feat.train()
model_Disc_img_LR.train()
model_Disc_img_HR.train()
running_loss_D_total = 0.0
running_loss_G_total = 0.0
running_loss_align = 0.0
running_loss_rec = 0.0
running_loss_res = 0.0
running_loss_sty = 0.0
running_loss_idt = 0.0
running_loss_cyc = 0.0
iter = 0
for data in tqdm(train_loader):
iter += 1
########################
# data load #
########################
X_t, Y_s = data['img_LQ'], data['img_GT']
ds4 = nn.Upsample(scale_factor=1/args.scale, mode='bicubic')
X_s = ds4(Y_s)
X_t = X_t.cuda(non_blocking=True)
X_s = X_s.cuda(non_blocking=True)
Y_s = Y_s.cuda(non_blocking=True)
# real label and fake label
batch_size = X_t.size(0)
real_label = torch.full((batch_size, 1), 1, dtype=X_t.dtype).cuda(non_blocking=True)
fake_label = torch.full((batch_size, 1), 0, dtype=X_t.dtype).cuda(non_blocking=True)
########################
# (1) Update D network #
########################
model_Disc_feat.zero_grad()
model_Disc_img_LR.zero_grad()
model_Disc_img_HR.zero_grad()
for i in range(args.n_disc):
# generator output (feature domain)
F_t = model_Enc(X_t)
F_s = model_Enc(X_s)
# 1. feature aligment loss (discriminator)
# output of discriminator (feature domain) (b x c(=1) x h x w)
output_Disc_F_t = model_Disc_feat(F_t.detach())
output_Disc_F_s = model_Disc_feat(F_s.detach())
# discriminator loss (feature domain)
loss_Disc_F_t = loss_MSE(output_Disc_F_t, fake_label)
loss_Disc_F_s = loss_MSE(output_Disc_F_s, real_label)
loss_Disc_feat_align = (loss_Disc_F_t + loss_Disc_F_s) / 2
# 2. SR reconstruction loss (discriminator)
# generator output (image domain)
Y_s_s = model_Dec_SR(F_s)
# output of discriminator (image domain)
output_Disc_Y_s_s = model_Disc_img_HR(Y_s_s.detach())
output_Disc_Y_s = model_Disc_img_HR(Y_s)
# discriminator loss (image domain)
loss_Disc_Y_s_s = loss_MSE(output_Disc_Y_s_s, fake_label)
loss_Disc_Y_s = loss_MSE(output_Disc_Y_s, real_label)
loss_Disc_img_rec = (loss_Disc_Y_s_s + loss_Disc_Y_s) / 2
# 4. Target degradation style loss
# generator output (image domain)
X_s_t = model_Dec_Id(F_s)
# output of discriminator (image domain)
output_Disc_X_s_t = model_Disc_img_LR(X_s_t.detach())
output_Disc_X_t = model_Disc_img_LR(X_t)
# discriminator loss (image domain)
loss_Disc_X_s_t = loss_MSE(output_Disc_X_s_t, fake_label)
loss_Disc_X_t = loss_MSE(output_Disc_X_t, real_label)
loss_Disc_img_sty = (loss_Disc_X_s_t + loss_Disc_X_t) / 2
# 6. Cycle loss
# generator output (image domain)
Y_s_t_s = model_Dec_SR(model_Enc(model_Dec_Id(F_s)))
# output of discriminator (image domain)
output_Disc_Y_s_t_s = model_Disc_img_HR(Y_s_t_s.detach())
output_Disc_Y_s = model_Disc_img_HR(Y_s)
# discriminator loss (image domain)
loss_Disc_Y_s_t_s = loss_MSE(output_Disc_Y_s_t_s, fake_label)
loss_Disc_Y_s = loss_MSE(output_Disc_Y_s, real_label)
loss_Disc_img_cyc = (loss_Disc_Y_s_t_s + loss_Disc_Y_s) / 2
# discriminator weight update
loss_D_total = loss_Disc_feat_align + loss_Disc_img_rec + loss_Disc_img_sty + loss_Disc_img_cyc
loss_D_total.backward()
optimizer_D.step()
scheduler_D.step()
########################
# (2) Update G network #
########################
model_Enc.zero_grad()
model_Dec_Id.zero_grad()
model_Dec_SR.zero_grad()
for i in range(args.n_gen):
# generator output (feature domain)
F_t = model_Enc(X_t)
F_s = model_Enc(X_s)
# 1. feature alignment loss (generator)
# output of discriminator (feature domain)
output_Disc_F_t = model_Disc_feat(F_t)
output_Disc_F_s = model_Disc_feat(F_s)
# generator loss (feature domain)
loss_G_F_t = loss_MSE(output_Disc_F_t, (real_label + fake_label)/2)
loss_G_F_s = loss_MSE(output_Disc_F_s, (real_label + fake_label)/2)
L_align_E = loss_G_F_t + loss_G_F_s
# 2. SR reconstruction loss
# generator output (image domain)
Y_s_s = model_Dec_SR(F_s)
# output of discriminator (image domain)
output_Disc_Y_s_s = model_Disc_img_HR(Y_s_s)
# L1 loss
loss_L1_rec = loss_L1(Y_s.detach(), Y_s_s)
# perceptual loss
loss_percept_rec = loss_percept(Y_s.detach(), Y_s_s)
# adversatial loss
loss_G_Y_s_s = loss_MSE(output_Disc_Y_s_s, real_label)
L_rec_G_SR = loss_L1_rec + args.lambda_percept*loss_percept_rec + args.lambda_adv*loss_G_Y_s_s
# 3. Target LR restoration loss
X_t_t = model_Dec_Id(F_t)
L_res_G_t = loss_L1(X_t, X_t_t)
# 4. Target degredation style loss
# generator output (image domain)
X_s_t = model_Dec_Id(F_s)
# output of discriminator (img domain)
output_Disc_X_s_t = model_Disc_img_LR(X_s_t)
# generator loss (feature domain)
loss_G_X_s_t = loss_MSE(output_Disc_X_s_t, real_label)
L_sty_G_t = loss_G_X_s_t
# 5. Feature identity loss
F_s_tilda = model_Enc(model_Dec_Id(F_s))
L_idt_G_t = loss_L1(F_s, F_s_tilda)
# 6. Cycle loss
# generator output (image domain)
Y_s_t_s = model_Dec_SR(model_Enc(model_Dec_Id(F_s)))
# output of discriminator (image domain)
output_Disc_Y_s_t_s = model_Disc_img_HR(Y_s_t_s)
# L1 loss
loss_L1_cyc = loss_L1(Y_s.detach(), Y_s_t_s)
# perceptual loss
loss_percept_cyc = loss_percept(Y_s.detach(), Y_s_t_s)
# adversarial loss
loss_Y_s_t_s = loss_MSE(output_Disc_Y_s_t_s, real_label)
L_cyc_G_t_G_SR = loss_L1_cyc + args.lambda_percept*loss_percept_cyc + args.lambda_adv*loss_Y_s_t_s
# generator weight update
loss_G_total = args.lambda_align*L_align_E + args.lambda_rec*L_rec_G_SR + args.lambda_res*L_res_G_t + args.lambda_sty*L_sty_G_t + args.lambda_idt*L_idt_G_t + args.lambda_cyc*L_cyc_G_t_G_SR
loss_G_total.backward()
optimizer_G.step()
scheduler_G.step()
########################
# compute loss #
########################
running_loss_D_total += loss_D_total.item()
running_loss_G_total += loss_G_total.item()
running_loss_align += L_align_E.item()
running_loss_rec += L_rec_G_SR.item()
running_loss_res += L_res_G_t.item()
running_loss_sty += L_sty_G_t.item()
running_loss_idt += L_idt_G_t.item()
running_loss_cyc += L_cyc_G_t_G_SR.item()
if iter % args.log_interval == 0:
wandb.log(
{
"loss_D_total_step": running_loss_D_total/iter,
"loss_G_total_step": running_loss_G_total/iter,
"loss_align_step": running_loss_align/iter,
"loss_rec_step": running_loss_rec/iter,
"loss_res_step": running_loss_res/iter,
"loss_sty_step": running_loss_sty/iter,
"loss_idt_step": running_loss_idt/iter,
"loss_cyc_step": running_loss_cyc/iter,
}
)
### EVALUATE ###
total_PSNR = 0
total_SSIM = 0
total_LPIPS = 0
val_iter = 0
with torch.no_grad():
model_Enc.eval()
model_Dec_SR.eval()
for batch_idx, batch in enumerate(val_loader):
val_iter += 1
source = batch["img_LQ"].to(device)
target = batch["img_GT"].to(device)
feat = model_Enc(source)
out = model_Dec_SR(feat)
total_PSNR += PSNR(out, target)
total_SSIM += SSIM(out, target)
total_LPIPS += LPIPS(out, target)
wandb.log(
{
"epoch": epoch,
"lr": optimizer_G.param_groups[0]['lr'],
"loss_D_total_epoch": running_loss_D_total/iter,
"loss_G_total_epoch": running_loss_G_total/iter,
"loss_align_epoch": running_loss_align/iter,
"loss_rec_epoch": running_loss_rec/iter,
"loss_res_epoch": running_loss_res/iter,
"loss_sty_epoch": running_loss_sty/iter,
"loss_idt_epoch": running_loss_idt/iter,
"loss_cyc_epoch": running_loss_cyc/iter,
"PSNR_val": total_PSNR/val_iter,
"SSIM_val": total_SSIM/val_iter,
"LPIPS_val": total_LPIPS/val_iter
}
)
if (epoch+1) % args.save_freq == 0:
weights_file_name = 'epoch_%d.pth' % (epoch+1)
weights_file = os.path.join(args.snap_path, weights_file_name)
torch.save({
'epoch': epoch,
'model_Enc': model_Enc.state_dict(),
'model_Dec_Id': model_Dec_Id.state_dict(),
'model_Dec_SR': model_Dec_SR.state_dict(),
'model_Disc_feat': model_Disc_feat.state_dict(),
'model_Disc_img_LR': model_Disc_img_LR.state_dict(),
'model_Disc_img_HR': model_Disc_img_HR.state_dict(),
'optimizer_D': optimizer_D.state_dict(),
'optimizer_G': optimizer_G.state_dict(),
'scheduler_D': scheduler_D.state_dict(),
'scheduler_G': scheduler_G.state_dict(),
}, weights_file)
print('save weights of epoch %d' % (epoch+1))
else:
### EVALUATE ###
total_PSNR = 0
total_SSIM = 0
total_LPIPS = 0
val_iter = 0
with torch.no_grad():
model_Enc.eval()
model_Dec_SR.eval()
for batch_idx, batch in enumerate(val_loader):
val_iter += 1
source = batch["img_LQ"].to(device)
target = batch["img_GT"].to(device)
feat = model_Enc(source)
out = model_Dec_SR(feat)
total_PSNR += PSNR(out, target)
total_SSIM += SSIM(out, target)
total_LPIPS += LPIPS(out, target)
print("PSNR_val: ", total_PSNR/val_iter)
print("SSIM_val: ", total_SSIM/val_iter)
print("LPIPS_val: ", total_LPIPS/val_iter) |