Spaces:
Running
Running
File size: 24,921 Bytes
f18e71f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 |
# Copyright 2024 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Create LM TF examples for XLNet."""
import dataclasses
import json
import math
import os
import random
from typing import Iterable, Mapping, List, Optional, Tuple
import unicodedata
# Import libraries
from absl import app
from absl import flags
from absl import logging
import numpy as np
import tensorflow as tf, tf_keras
from official.nlp.tools import tokenization
special_symbols = {
"<unk>": 0,
"<s>": 1,
"</s>": 2,
"<cls>": 3,
"<sep>": 4,
"<pad>": 5,
"<mask>": 6,
"<eod>": 7,
"<eop>": 8,
}
FLAGS = flags.FLAGS
flags.DEFINE_integer("seq_length", 512,
help="Sequence length.")
flags.DEFINE_integer("reuse_length", 256,
help="Number of token that can be reused as memory. "
"Could be half of `seq_len`.")
flags.DEFINE_string("input_file", None,
"Input raw text file (or comma-separated list of files).")
flags.DEFINE_string(
"save_dir", None,
"Directory for saving processed data.")
flags.DEFINE_string("sp_model_file", "",
"The path to the model used by sentence piece tokenizer.")
flags.DEFINE_bool("use_eod_token", True,
"Whether or not to include EOD tokens.")
flags.DEFINE_bool("bi_data", True, "Whether or not to use bi-directional data.")
flags.DEFINE_bool(
"do_lower_case", True,
"Whether to lower case the input text. Should be True for uncased "
"models and False for cased models.")
flags.DEFINE_integer("per_host_batch_size", 32, "Batch size per host.")
flags.DEFINE_integer("num_cores_per_host", 16,
"The number of (TPU) cores per host.")
flags.DEFINE_string("prefix", "", "Filename prefix.")
flags.DEFINE_string("suffix", "", "Filename suffix.")
flags.DEFINE_integer("task_id", None,
"The id of the current task.")
flags.DEFINE_integer("num_tasks", None,
"The total number of tasks.")
flags.DEFINE_integer("num_passes", 1, "The number of times to run the script.")
@dataclasses.dataclass
class TrainingInstance:
"""Representation of a single XLNet Pretraining instance."""
data: Iterable[int]
segment_ids: Iterable[int]
boundary_indices: Iterable[int]
label: int
def to_feature(self) -> Mapping[str, tf.train.Feature]:
feat = lambda x: tf.train.Feature(int64_list=tf.train.Int64List(value=x))
return dict(
input_word_ids=feat(self.data),
input_type_ids=feat(self.segment_ids),
boundary_indices=feat(self.boundary_indices),
label=feat([self.label]))
def to_example(self) -> tf.train.Example:
return tf.train.Example(
features=tf.train.Features(feature=self.to_feature()))
def __str__(self):
def seq_to_str(seq):
return " ".join([str(x) for x in seq])
s = ""
s += "tokens: %s\n" % seq_to_str(self.data)
s += "segment_ids: %s\n" % seq_to_str(self.segment_ids)
s += "boundary_indices: %s\n" % seq_to_str(self.boundary_indices)
s += "label: %s\n" % self.label
s += "\n"
return s
def __repr__(self):
return self.__str__()
def _preprocess_line(line: str, do_lower_case: bool = False) -> str:
"""Preprocesses an individual raw text line.
This function will:
- Remove extraneous spaces.
- Replace `` with ", and '' with ".
- Replaces accents.
- Applies lower casing.
Args:
line: The input line to preprocess.
do_lower_case: Whether or not to lower case the text.
Returns:
The preprocessed line.
"""
line = " ".join(line.split())
line = line.replace("``", "\"").replace("''", "\"")
# Replace accents.
line = unicodedata.normalize("NFKD", line)
line = "".join([c for c in line if not unicodedata.combining(c)])
if do_lower_case:
line = line.lower()
return line
def preprocess_and_tokenize_input_files(
input_files: Iterable[str],
tokenizer: tokenization.FullSentencePieceTokenizer,
use_eod: bool = True,
do_lower_case: bool = False,
log_example_freq: int = 100000) -> List[Tuple[np.array, np.array]]:
"""Preprocesses and encodes raw text from input files.
This function preprocesses raw text and encodes them into tokens using a
`SentencePieceModel` tokenization method. This also provides the sentence
indicator for each token.
Args:
input_files: The list of input file names.
tokenizer: The SentencePiece tokenizer that has the attribute `sp_model`.
use_eod: Whether or not to use an EOD indicator. If `False`, then EOD is
not included.
do_lower_case: Whether or not to apply lower casing during raw text
preprocessing.
log_example_freq: The optional field for how many lines to process before
emitting an info log.
Returns:
The preprocessed list. Each entry in the list is a tuple consisting of
the token IDs and the sentence IDs.
"""
all_data = []
eod_symbol = special_symbols["<eod>"]
total_number_of_lines = 0
# Input file format:
# (1) One sentence per line. These should ideally be actual sentences, not
# entire paragraphs or arbitrary spans of text. (Because we use the
# sentence boundaries for the "next sentence prediction" task).
# (2) Blank lines between documents. Document boundaries are needed so
# that the "next sentence prediction" task doesn't span between documents.
for input_file in input_files:
line_count = 0
logging.info("Preprocessing %s", input_file)
all_tokens = []
all_sentence_ids = []
sentence_id = True
with tf.io.gfile.GFile(input_file, "rb") as reader:
while True:
line = tokenization.convert_to_unicode(reader.readline())
if not line:
break
line_count += 1
if line_count % log_example_freq == 0:
logging.info("Loading line %d", line_count)
line = line.strip()
if not line:
if use_eod:
token_ids = [eod_symbol]
sentence_id = not sentence_id
else:
continue
else:
preprocessed_line = _preprocess_line(
line=line, do_lower_case=do_lower_case)
token_ids = tokenization.encode_ids(
sp_model=tokenizer.sp_model, text=preprocessed_line)
all_tokens.extend(token_ids)
all_sentence_ids.extend([sentence_id] * len(token_ids))
sentence_id = not sentence_id
logging.info("Finished processing %s. Number of lines: %d",
input_file, line_count)
if line_count == 0:
continue
total_number_of_lines += line_count
all_tokens = np.array(all_tokens, dtype=np.int64)
all_sentence_ids = np.array(all_sentence_ids, dtype=bool)
all_data.append((all_tokens, all_sentence_ids))
logging.info("Completed text preprocessing. Total number of lines: %d",
total_number_of_lines)
return all_data
def _reshape_to_batch_dimensions(
tokens: np.array,
sentence_ids: np.array,
per_host_batch_size: int) -> Tuple[np.array, np.array]:
"""Truncates and reshapes input data with a batch major dimension.
Args:
tokens: The input token ids. This should have the same shape as
`sentence_ids`.
sentence_ids: The input sentence ids. This should have the same shape as
`token_ids`.
per_host_batch_size: The target per-host batch size.
Returns:
The tuple of reshaped tokens and sentence_ids.
"""
num_steps = len(tokens) // per_host_batch_size
truncated_data_length = num_steps * per_host_batch_size
logging.info("per_host_batch_size: %d", per_host_batch_size)
logging.info("num_steps: %d", num_steps)
def truncate_and_reshape(a):
return a[:truncated_data_length].reshape((per_host_batch_size, num_steps))
return (truncate_and_reshape(tokens), truncate_and_reshape(sentence_ids))
def _create_a_and_b_segments(
tokens: np.array,
sentence_ids: np.array,
begin_index: int,
total_length: int,
no_cut_probability: float = 0.5):
"""Splits segments A and B from a single instance of tokens and sentence ids.
Args:
tokens: The 1D input token ids. This represents an individual entry within a
batch.
sentence_ids: The 1D input sentence ids. This represents an individual entry
within a batch. This should be the same length as `tokens`.
begin_index: The reference beginning index to split data.
total_length: The target combined length of segments A and B.
no_cut_probability: The probability of not cutting a segment despite
a cut possibly existing.
Returns:
A tuple consisting of A data, B data, and label.
"""
data_length = tokens.shape[0]
if begin_index + total_length >= data_length:
logging.info("[_create_segments]: begin_index %d + total_length %d >= "
"data_length %d", begin_index, total_length, data_length)
return None
end_index = begin_index + 1
cut_indices = []
# Identify all indices where sentence IDs change from one to the next.
while end_index < data_length:
if sentence_ids[end_index] != sentence_ids[end_index - 1]:
if end_index - begin_index >= total_length:
break
cut_indices.append(end_index)
end_index += 1
a_begin = begin_index
if not cut_indices or random.random() < no_cut_probability:
# Segments A and B are contained within the same sentence.
label = 0
if not cut_indices:
a_end = end_index
else:
a_end = random.choice(cut_indices)
b_length = max(1, total_length - (a_end - a_begin))
b_begin = random.randint(0, data_length - 1 - b_length)
b_end = b_begin + b_length
while b_begin > 0 and sentence_ids[b_begin - 1] == sentence_ids[b_begin]:
b_begin -= 1
while (b_end < data_length - 1 and
sentence_ids[b_end - 1] == sentence_ids[b_end]):
b_end += 1
else:
# Segments A and B are different sentences.
label = 1
a_end = random.choice(cut_indices)
b_begin = a_end
b_end = end_index
while a_end - a_begin + b_end - b_begin > total_length:
if a_end - a_begin > b_end - b_begin:
# Delete only the right side for the LM objective.
a_end -= 1
else:
b_end -= 1
if a_end >= data_length or b_end >= data_length:
logging.info("[_create_segments]: a_end %d or b_end %d >= data_length %d",
a_end, b_end, data_length)
return None
a_data = tokens[a_begin: a_end]
b_data = tokens[b_begin: b_end]
return a_data, b_data, label
def _is_functional_piece(piece: str) -> bool:
return piece != "<unk>" and piece.startswith("<") and piece.endswith(">")
def _is_start_piece(piece: str) -> bool:
special_pieces = set(list('!"#$%&\"()*+,-./:;?@[\\]^_`{|}~'))
if (piece.startswith("▁") or piece in special_pieces):
return True
else:
return False
def _get_boundary_indices(
data: np.array,
tokenizer: tokenization.FullSentencePieceTokenizer) -> np.array:
"""Gets the boundary indices of whole words."""
seq_length = len(data)
boundary_indices = []
for index, piece in enumerate(tokenizer.convert_ids_to_tokens(data.tolist())):
if _is_start_piece(piece) and not _is_functional_piece(piece):
boundary_indices.append(index)
boundary_indices.append(seq_length)
return boundary_indices
def _convert_tokens_to_instances(
tokens: np.array,
sentence_ids: np.array,
per_host_batch_size: int,
seq_length: int,
reuse_length: int,
bi_data: bool,
tokenizer: tokenization.FullSentencePieceTokenizer,
num_cores_per_host: int = 0,
logging_frequency: int = 500) -> List[TrainingInstance]:
"""Converts tokens and sentence IDs into individual training instances.
The format of data in the XLNet pretraining task is very similar to the
BERT pretraining task. Two segments A and B are randomly sampled, and the
contatenation of A and B into a single sequence is used to perform
language modeling.
To create an XLNet Pretraining instance from a single long sequence, S:
- Create a segment of length `reuse_length`. This first segment represents
past tokens. During modeling, this segment is used to cache obtained
content representations for the segment recurrence mechanism.
- Similar to BERT, create a segment of length `seq_length` - `reuse_length`
composed of A and B segments.
For XLNet, the order is "A", "SEP", "B", "SEP", "CLS".
Args:
tokens: All tokens concatenated into a single list.
sentence_ids: All sentence IDs concatenated into a single list.
per_host_batch_size: The target batch size per host.
seq_length: The max sequence length.
reuse_length: The number of tokens to use from the previous segment.
bi_data: Whether or not to use bidirectional data.
tokenizer: The SentencePiece tokenizer that has the attribute `sp_model`.
num_cores_per_host: The number of cores per host. This is required if
`bi_data` = `True`.
logging_frequency: The frequency at which to log status updates.
Returns:
A list of `TrainingInstance` objects.
"""
instances = []
per_core_batch_size = (per_host_batch_size // num_cores_per_host
if bi_data else None)
if bi_data:
logging.info("Bi-directional data enabled.")
assert per_host_batch_size % (2 * num_cores_per_host) == 0
forward_tokens, forward_sentence_ids = _reshape_to_batch_dimensions(
tokens=tokens,
sentence_ids=sentence_ids,
per_host_batch_size=per_host_batch_size // 2)
forward_data_shape = (num_cores_per_host, 1, per_core_batch_size // 2, -1)
forward_tokens = forward_tokens.reshape(forward_data_shape)
forward_sentence_ids = forward_sentence_ids.reshape(forward_data_shape)
backwards_tokens = forward_tokens[:, :, :, ::-1]
backwards_sentence_ids = forward_sentence_ids[:, :, :, ::-1]
tokens = np.concatenate([forward_tokens, backwards_tokens], 1).reshape(
per_host_batch_size, -1)
sentence_ids = np.concatenate(
[forward_sentence_ids, backwards_sentence_ids]).reshape(
per_host_batch_size, -1)
else:
logging.info("Bi-directional data disabled.")
tokens, sentence_ids = _reshape_to_batch_dimensions(
tokens=tokens,
sentence_ids=sentence_ids,
per_host_batch_size=per_host_batch_size)
logging.info("Tokens shape: %s", tokens.shape)
data_length = tokens.shape[1]
sep = np.array([special_symbols["<sep>"]], dtype=np.int64)
cls = np.array([special_symbols["<cls>"]], dtype=np.int64)
# 2 sep, 1 cls
num_special_tokens = 3
data_index = 0
batch_number = 0
step_size = reuse_length if reuse_length else seq_length
num_batches = math.ceil(data_length / step_size)
while data_index + seq_length <= data_length:
if batch_number % logging_frequency == 0:
logging.info("Processing batch %d of %d", batch_number, num_batches)
for batch_index in range(per_host_batch_size):
previous_segment_tokens = tokens[
batch_index, data_index: data_index + reuse_length]
results = _create_a_and_b_segments(
tokens=tokens[batch_index],
sentence_ids=sentence_ids[batch_index],
begin_index=data_index + reuse_length,
total_length=seq_length - reuse_length - num_special_tokens)
if results is None:
logging.info("Stopping at data index: %d", data_index)
break
a_data, b_data, label = results
data = np.concatenate(
[previous_segment_tokens, a_data, sep, b_data, sep, cls])
a_length = a_data.shape[0]
b_length = b_data.shape[0]
segment_ids = ([0] * (reuse_length + a_length) + [0]
+ [1] * b_length + [1] + [2])
boundary_indices = _get_boundary_indices(tokenizer=tokenizer,
data=data)
assert len(data) == seq_length
assert len(segment_ids) == seq_length
assert len(boundary_indices) > 0 # pylint: disable=g-explicit-length-test
instances.append(TrainingInstance(
data=data,
segment_ids=segment_ids,
boundary_indices=boundary_indices,
label=label))
batch_number += 1
data_index += step_size
return instances
def write_instances_to_tfrecord(
instances: Iterable[TrainingInstance],
save_path: str):
"""Writes instances to TFRecord."""
record_writer = tf.io.TFRecordWriter(save_path)
logging.info("Start writing to %s.", save_path)
for i, instance in enumerate(instances):
if i < 5:
logging.info("Instance %d: %s", i, str(instance))
record_writer.write(instance.to_example().SerializeToString())
record_writer.close()
logging.info("Done writing %s.", save_path)
def shuffle_and_combine_preprocessed_data(
all_data: List[Tuple[np.array, np.array]]) -> Tuple[np.array, np.array]:
"""Shuffles and combines preprocessed token/sentence IDs from documents."""
document_permutation = np.random.permutation(len(all_data))
previous_sentence_id = None
all_tokens, all_sentence_ids = [], []
for document_index in document_permutation:
tokens, sentence_ids = all_data[document_index]
# pylint: disable=g-explicit-length-test
if len(tokens) == 0:
continue
if (previous_sentence_id is not None and
sentence_ids[0] == previous_sentence_id):
sentence_ids = np.logical_not(sentence_ids)
all_tokens.append(tokens)
all_sentence_ids.append(sentence_ids)
previous_sentence_id = sentence_ids[-1]
return np.concatenate(all_tokens), np.concatenate(all_sentence_ids)
def get_tfrecord_name(
per_host_batch_size: int,
num_cores_per_host: int,
seq_length: int,
bi_data: bool,
reuse_length: int,
do_lower_case: bool,
use_eod_token: bool,
prefix: str = "",
suffix: str = "",
pass_id: int = 0,
num_passes: int = 1,
task_id: int = None,
num_tasks: int = None) -> str:
"""Formats the resulting TFRecord name based on provided inputs."""
components = []
if prefix:
components.append(prefix)
components.append("seqlen-{}".format(seq_length))
if reuse_length == 0:
components.append("memless")
else:
components.append("reuse-{}".format(reuse_length))
components.append("bs-{}".format(per_host_batch_size))
components.append("cores-{}".format(num_cores_per_host))
if do_lower_case:
components.append("uncased")
else:
components.append("cased")
if use_eod_token:
components.append("eod")
if bi_data:
components.append("bi")
else:
components.append("uni")
if suffix:
components.append(suffix)
s = "_".join(components) + ".tfrecord"
if num_passes == 1 and task_id is None:
return s
if task_id is None:
num_tasks = 1
task_id = 0
current_shard = task_id * num_passes + pass_id
total_shards = num_tasks * num_passes
return s + "-{}-of-{}".format(current_shard, total_shards)
def create_tfrecords(
tokenizer: tokenization.FullSentencePieceTokenizer,
input_file_or_files: str,
use_eod_token: bool,
do_lower_case: bool,
per_host_batch_size: int,
seq_length: int,
reuse_length: int,
bi_data: bool,
num_cores_per_host: int,
save_dir: str,
prefix: str = "",
suffix: str = "",
num_tasks: Optional[int] = None,
task_id: Optional[int] = None,
num_passes: int = 1):
"""Runs the end-to-end preprocessing pipeline."""
logging.info("Input configuration:")
logging.info("input file(s): %s", input_file_or_files)
logging.info("use_eod_token: %s", use_eod_token)
logging.info("do_lower_case: %s", do_lower_case)
logging.info("per_host_batch_size: %d", per_host_batch_size)
logging.info("seq_length: %d", seq_length)
logging.info("reuse_length: %d", reuse_length)
logging.info("bi_data: %s", bi_data)
logging.info("num_cores_per_host: %d", num_cores_per_host)
logging.info("save_dir: %s", save_dir)
if task_id is not None and num_tasks is not None:
logging.info("task_id: %d", task_id)
logging.info("num_tasks: %d", num_tasks)
input_files = []
for input_pattern in input_file_or_files.split(","):
input_files.extend(tf.io.gfile.glob(input_pattern))
logging.info("*** Reading from input files ***")
for input_file in input_files:
logging.info(" %s", input_file)
logging.info("Shuffling the files with a fixed random seed.")
np.random.shuffle(input_files)
if num_tasks is not None:
assert task_id is not None
logging.info("Total number of input files: %d", len(input_files))
logging.info("Splitting into %d shards of %d files each.",
num_tasks, len(input_files) // num_tasks)
input_files = input_files[task_id::num_tasks]
all_data = preprocess_and_tokenize_input_files(
input_files=input_files,
tokenizer=tokenizer,
use_eod=use_eod_token,
do_lower_case=do_lower_case)
for pass_id in range(num_passes):
logging.info("Beginning pass %d of %d", pass_id, num_passes)
tokens, sentence_ids = shuffle_and_combine_preprocessed_data(all_data)
assert len(tokens) == len(sentence_ids)
filename = get_tfrecord_name(
per_host_batch_size=per_host_batch_size,
num_cores_per_host=num_cores_per_host,
seq_length=seq_length,
bi_data=bi_data,
use_eod_token=use_eod_token,
reuse_length=reuse_length,
do_lower_case=do_lower_case,
prefix=prefix,
suffix=suffix,
pass_id=pass_id,
num_passes=num_passes,
num_tasks=num_tasks,
task_id=task_id)
save_path = os.path.join(save_dir, filename)
if os.path.exists(save_path):
# If the path already exists, then we were probably preempted but
# previously wrote this file.
logging.info("%s already exists, skipping this batch.", save_path)
else:
instances = _convert_tokens_to_instances(
tokenizer=tokenizer,
tokens=tokens,
sentence_ids=sentence_ids,
per_host_batch_size=per_host_batch_size,
seq_length=seq_length,
reuse_length=reuse_length,
bi_data=bi_data,
num_cores_per_host=num_cores_per_host)
write_instances_to_tfrecord(instances=instances, save_path=save_path)
if task_id is None or task_id == 0:
corpus_info = {
"vocab_size": 32000,
"per_host_batch_size": per_host_batch_size,
"num_cores_per_host": num_cores_per_host,
"seq_length": seq_length,
"reuse_length": reuse_length,
"do_lower_case": do_lower_case,
"bi_data": bi_data,
"use_eod_token": use_eod_token,
}
corpus_fname = os.path.basename(filename) + ".json"
corpus_destination = os.path.join(save_dir, corpus_fname)
logging.info("Saving corpus info to %s", corpus_destination)
with tf.io.gfile.GFile(corpus_destination, "w") as fp:
json.dump(corpus_info, fp)
def main(_):
tokenizer = tokenization.FullSentencePieceTokenizer(FLAGS.sp_model_file)
create_tfrecords(
tokenizer=tokenizer,
input_file_or_files=FLAGS.input_file,
use_eod_token=FLAGS.use_eod_token,
do_lower_case=FLAGS.do_lower_case,
per_host_batch_size=FLAGS.per_host_batch_size,
seq_length=FLAGS.seq_length,
reuse_length=FLAGS.reuse_length,
bi_data=FLAGS.bi_data,
num_cores_per_host=FLAGS.num_cores_per_host,
save_dir=FLAGS.save_dir,
prefix=FLAGS.prefix,
suffix=FLAGS.suffix,
num_tasks=FLAGS.num_tasks,
task_id=FLAGS.task_id,
num_passes=FLAGS.num_passes)
if __name__ == "__main__":
np.random.seed(0)
logging.set_verbosity(logging.INFO)
app.run(main)
|