File size: 6,172 Bytes
ac6d958
4d4c9b0
ac6d958
4d4c9b0
0a7cea6
 
 
4d4c9b0
0a7cea6
 
 
 
 
 
 
ac6d958
131e75e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf37b0d
0a7cea6
 
 
 
 
 
 
 
bf37b0d
0a7cea6
 
 
 
 
 
 
 
bf37b0d
0a7cea6
 
 
 
ac6d958
 
0a7cea6
131e75e
 
 
 
ac6d958
bf37b0d
131e75e
 
bf37b0d
 
 
 
 
 
 
 
131e75e
 
 
 
 
 
bf37b0d
 
 
 
 
 
 
 
 
 
131e75e
 
 
 
 
 
 
 
 
 
bf37b0d
131e75e
bf37b0d
 
c968835
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf37b0d
 
0a7cea6
c968835
 
 
 
bf37b0d
 
5a31d97
 
085de41
5a31d97
 
bf37b0d
 
 
 
 
085de41
bf37b0d
 
c968835
5a31d97
 
 
 
085de41
5a31d97
 
 
bf37b0d
 
c7f4c0d
bf37b0d
 
0a7cea6
c968835
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import os
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline

en2ko = "KoJLabs/nllb-finetuned-en2ko"
ko2en = "KoJLabs/nllb-finetuned-ko2en"
style = "KoJLabs/bart-speech-style-converter"

en2ko_model = AutoModelForSeq2SeqLM.from_pretrained(en2ko)
ko2en_model = AutoModelForSeq2SeqLM.from_pretrained(ko2en)
style_model = AutoModelForSeq2SeqLM.from_pretrained(style)

en2ko_tokenizer = AutoTokenizer.from_pretrained(en2ko)
ko2en_tokenizer = AutoTokenizer.from_pretrained(ko2en)
style_tokenizer = AutoTokenizer.from_pretrained(style)

def _post_process(self, text):
        textList = []
        emojiList = []
        twit = Twitter()

        posText = twit.pos(text)
        posArray = np.array(posText)

        for i in range(len(posArray)):
            if posArray[i][1] == 'KoreanParticle':
                emojiList.append(posArray[i][0])

        for i in range(len(emojiList)):
            splitText = text.split(emojiList[i], maxsplit=1)

            if splitText[0] == '':
                textList.append('')
            else:
                textList.append(splitText[0])

            try:
                if len(splitText[1:]) > 1:
                    text = ''.join(splitText[1:]).strip()
                else:
                    text = splitText[1:][0].strip()

            except:
                break

            try:
                if text in emojiList[i+1]:
                    pass
            except:
                textList.append(splitText[-1])
                emojiList.append('')
                break

        ## 이λͺ¨μ§€ μ—†λŠ” 경우            
        if len(emojiList) < 1:
            emojiList.append('')
            textList.append(text)
                
        return emojiList, textList

def translation(source, target, text):
    formats = {"English":"eng_Latn", "Korean":"kor_Hang"}
    src = formats[source]
    tgt = formats[target]

    if src == "eng_Latn":
        translator = pipeline(
            'translation',
            model=en2ko_model,
            tokenizer=en2ko_tokenizer,
            src_lang=src, 
            tgt_lang=tgt, 
        )

    if src == "kor_Hang":
        translator = pipeline(
            'translation',
            model=ko2en_model,
            tokenizer=ko2en_tokenizer,
            src_lang=src, 
            tgt_lang=tgt
        )

    output = translator(text)
    translated_text = output[0]['translation_text']

    if (text == '') or (text == '!') or (text == '?') or (text == '.') or (text == ','):
        return text
    else:
        return translated_text

def augmentation(text):
    emojiList, textList = _post_process(text)

    ko2en_translator = pipeline(
            'translation',
            model=ko2en_model,
            tokenizer=ko2en_tokenizer,
            src_lang="kor_Hang", 
            tgt_lang="eng_Latn"
        )
    
    output = ko2en_translator(textList)
    outputs = []

    for out in output:
        outputs.append(out['translation_text'])
    ko2en_text = outputs
    
    en2ko_translator = pipeline(
            'translation',
            model=en2ko_model,
            tokenizer=en2ko_tokenizer,
            src_lang="eng_Latn", 
            tgt_lang="kor_Hang", 
        )
    
    output = en2ko_translator(ko2en_text)
    
    en2ko_text = []
    for txt in en2ko_text:
        en2ko_text.append(txt['translation_text'])

    outList = []    
    for emo, txt in zip(emojiList, en2ko_text):
        output = txt + emo
        outList.append(output)
        output = ''.join(outList).strip()

    return output
    

def conversion(source, text):
    formats = {
                "formal":"문어체",
                "informal":"ꡬ어체",
                "android":"μ•ˆλ“œλ‘œμ΄λ“œ",
                "azae":"μ•„μž¬",
                "chat":"μ±„νŒ…",
                "choding":"μ΄ˆλ“±ν•™μƒ",
                "emoticon":"이λͺ¨ν‹°μ½˜",
                "enfp":"enfp",
                "gentle":"신사",
                "halbae":"할아버지",
                "halmae":"ν• λ¨Έλ‹ˆ",
                "joongding":"쀑학생",
                "king":"μ™•",
                "naruto":"λ‚˜λ£¨ν† ",
                "seonbi":"μ„ λΉ„",
                "sosim":"μ†Œμ‹¬ν•œ",
                "translator":"λ²ˆμ—­κΈ°",
            }
    style = formats[source]

    input_text = f"{style} ν˜•μ‹μœΌλ‘œ λ³€ν™˜:" + text

    converter = pipeline(
            'text2text-generation',
            model=style_model,
            tokenizer=style_tokenizer,
        )

    output = converter(input_text)
    generated_text = output[0]['generated_text']

    return generated_text



lang = ['English','Korean']
style = ['formal', 'informal', 'android', 'azae', 'chat', 'choding', 'emoticon', 'enfp', \
         'gentle', 'halbae', 'halmae', 'joongding', 'king', 'naruto', 'seonbi', 'sosim', 'translator']

    
translation_app = gr.Interface(
    fn=translation,
    inputs=[gr.inputs.Dropdown(choices=lang, label='Source Language'), gr.inputs.Dropdown(choices=lang, label='Target Language'), gr.inputs.Textbox(lines=5, label='Text to Translate')],
    outputs=[gr.outputs.Textbox(label='Translated Text')],
    title="Translation",
    enable_queue=True,
)

augmentation_app = gr.Interface(
    fn=augmentation,
    inputs=[gr.inputs.Textbox(lines=5, label='Korean Text to Augmentation')],
    outputs=[gr.outputs.Textbox(label='Augmented Text')],
    title="Korean Data Augmentation (w.backtranslation)",
    enable_queue=True,
)
    
conversion_app = gr.Interface(
    fn=conversion,
    inputs=[gr.inputs.Dropdown(choices=style, label='Speech Style'), gr.inputs.Textbox(lines=5, label='Text to style conversion')],
    outputs=[gr.outputs.Textbox(label='Converted Text')],
    title="Speech Style Conversion",
    enable_queue=True,
)

demo = gr.TabbedInterface([translation_app, augmentation_app, conversion_app], \
                          ["Translation", "Augmentation", "Speech Style conversion"],\
                          title = 'πŸ”₯If you want to download as pip package, \
                            please visit our github. (https://github.com/KoJLabs/KoTAN) πŸ”₯'
                            )

demo.launch()