File size: 8,155 Bytes
9f0ec46
5969029
 
04792be
5969029
60c342d
67a9702
76c450e
69c4c51
b8fa391
76c450e
f0e3479
186923b
f0e3479
 
d7c7b18
 
f0e3479
186923b
b8fa391
 
 
 
 
 
 
 
 
f0e3479
5969029
 
f0e3479
5969029
 
 
 
f0e3479
67a9702
f0e3479
 
 
 
 
 
 
67a9702
186923b
 
 
 
 
 
 
 
 
 
 
 
b8fa391
 
 
 
 
 
 
 
186923b
b8fa391
 
 
186923b
 
 
 
 
 
 
 
 
 
 
dc9925a
186923b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import streamlit as st
import torch
import clip
from PIL import Image
import os
import numpy as np
import chromadb
import requests
import tempfile
import time

# ----- Setup -----
st.set_page_config(page_title="CLIP Image Search", layout="wide")
CACHE_DIR = tempfile.gettempdir()
CHROMA_PATH = os.path.join(CACHE_DIR, "chroma_db")
DEMO_DIR = os.path.join(CACHE_DIR, "demo_images")
os.makedirs(DEMO_DIR, exist_ok=True)

# ----- Session State Init -----
if 'dataset_loaded' not in st.session_state:
    st.session_state.dataset_loaded = False
if 'dataset_name' not in st.session_state:
    st.session_state.dataset_name = None
if 'demo_images' not in st.session_state:
    st.session_state.demo_images = []
if 'user_images' not in st.session_state:
    st.session_state.user_images = []

# ----- Load CLIP Model -----
if 'model' not in st.session_state:
    device = "cuda" if torch.cuda.is_available() else "cpu"
    model, preprocess = clip.load("ViT-B/32", device=device, download_root=CACHE_DIR)
    st.session_state.model = model
    st.session_state.preprocess = preprocess
    st.session_state.device = device

# ----- Initialize ChromaDB -----
if 'chroma_client' not in st.session_state:
    st.session_state.chroma_client = chromadb.PersistentClient(path=CHROMA_PATH)
    st.session_state.demo_collection = st.session_state.chroma_client.get_or_create_collection(
        name="demo_images", metadata={"hnsw:space": "cosine"}
    )
    st.session_state.user_collection = st.session_state.chroma_client.get_or_create_collection(
        name="user_images", metadata={"hnsw:space": "cosine"}
    )

# ----- Sidebar -----
with st.sidebar:
    st.title("🧠 CLIP Search App")
    st.markdown("Choose a dataset to begin:")
    if st.button("πŸ“¦ Load Demo Images"):
        st.session_state.dataset_name = "demo"
        st.session_state.dataset_loaded = False
    if st.button("πŸ“€ Upload Your Images"):
        st.session_state.dataset_name = "user"
        st.session_state.dataset_loaded = False

# ----- Helper -----
def download_image_with_retry(url, path, retries=3, delay=1.0):
    for attempt in range(retries):
        try:
            r = requests.get(url, timeout=10)
            if r.status_code == 200:
                with open(path, 'wb') as f:
                    f.write(r.content)
                return True
        except Exception:
            time.sleep(delay)
    return False

# ----- Main App -----
left, right = st.columns([2, 1])

with left:
    st.title("πŸ” CLIP-Based Image Search")

    # ----- Load Demo -----
    if st.session_state.dataset_name == "demo" and not st.session_state.dataset_loaded:
        with st.spinner("Downloading and indexing demo images..."):
            st.session_state.demo_collection.delete(ids=[str(i) for i in range(50)])
            demo_image_paths, demo_images = [], []
            for i in range(50):
                path = os.path.join(DEMO_DIR, f"img_{i+1:02}.jpg")
                if not os.path.exists(path):
                    url = f"https://picsum.photos/seed/{i}/1024/768"
                    download_image_with_retry(url, path)
                try:
                    demo_images.append(Image.open(path).convert("RGB"))
                    demo_image_paths.append(path)
                except:
                    continue
            embeddings, ids, metadatas = [], [], []
            for i, img in enumerate(demo_images):
                img_tensor = st.session_state.preprocess(img).unsqueeze(0).to(st.session_state.device)
                with torch.no_grad():
                    embedding = st.session_state.model.encode_image(img_tensor).cpu().numpy().flatten()
                embeddings.append(embedding)
                ids.append(str(i))
                metadatas.append({"path": demo_image_paths[i]})
            st.session_state.demo_collection.add(embeddings=embeddings, ids=ids, metadatas=metadatas)
            st.session_state.demo_images = demo_images
            st.session_state.dataset_loaded = True
        st.success("βœ… Demo images loaded!")

    # ----- Upload User Images -----
    if st.session_state.dataset_name == "user" and not st.session_state.dataset_loaded:
        uploaded = st.file_uploader("Upload your images", type=["jpg", "jpeg", "png"], accept_multiple_files=True)
        if uploaded:
            st.session_state.user_collection.delete(ids=[
                str(i) for i in range(st.session_state.user_collection.count())
            ])
            user_images = []
            for i, file in enumerate(uploaded):
                try:
                    img = Image.open(file).convert("RGB")
                except:
                    continue
                user_images.append(img)
                img_tensor = st.session_state.preprocess(img).unsqueeze(0).to(st.session_state.device)
                with torch.no_grad():
                    embedding = st.session_state.model.encode_image(img_tensor).cpu().numpy().flatten()
                st.session_state.user_collection.add(
                    embeddings=[embedding], ids=[str(i)], metadatas=[{"index": i}]
                )
            st.session_state.user_images = user_images
            st.session_state.dataset_loaded = True
            st.success(f"βœ… Uploaded {len(user_images)} images.")

    # ----- Search Section -----
    if st.session_state.dataset_loaded:
        st.subheader("πŸ”Ž Search")
        query_type = st.radio("Search by:", ("Text", "Image"))

        query_embedding = None
        if query_type == "Text":
            text_query = st.text_input("Enter your search prompt:")
            if text_query:
                tokens = clip.tokenize([text_query]).to(st.session_state.device)
                with torch.no_grad():
                    query_embedding = st.session_state.model.encode_text(tokens).cpu().numpy().flatten()
        elif query_type == "Image":
            query_file = st.file_uploader("Upload query image", type=["jpg", "jpeg", "png"], key="query_image")
            if query_file:
                query_img = Image.open(query_file).convert("RGB")
                st.image(query_img, caption="Query Image", width=200)
                query_tensor = st.session_state.preprocess(query_img).unsqueeze(0).to(st.session_state.device)
                with torch.no_grad():
                    query_embedding = st.session_state.model.encode_image(query_tensor).cpu().numpy().flatten()

        # ----- Perform Search -----
        if query_embedding is not None:
            if st.session_state.dataset_name == "demo":
                collection = st.session_state.demo_collection
                images = st.session_state.demo_images
            else:
                collection = st.session_state.user_collection
                images = st.session_state.user_images

            if collection.count() > 0:
                results = collection.query(
                    query_embeddings=[query_embedding],
                    n_results=min(5, collection.count())
                )
                ids = results["ids"][0]
                distances = results["distances"][0]
                similarities = [1 - d for d in distances]

                st.subheader("🎯 Top Matches")
                cols = st.columns(len(ids))
                for i, (img_id, sim) in enumerate(zip(ids, similarities)):
                    with cols[i]:
                        st.image(images[int(img_id)], caption=f"Similarity: {sim:.3f}", use_column_width=True)
            else:
                st.warning("⚠️ No images available for search.")
    else:
        st.info("πŸ‘ˆ Choose a dataset from the sidebar to get started.")

# ----- Right Panel: Show Current Dataset Images -----
with right:
    st.subheader("πŸ–ΌοΈ Dataset Preview")
    image_list = st.session_state.demo_images if st.session_state.dataset_name == "demo" else st.session_state.user_images
    if st.session_state.dataset_loaded and image_list:
        st.caption(f"Showing {len(image_list)} images")
        for i, img in enumerate(image_list[:20]):
            st.image(img, use_column_width=True)
    else:
        st.markdown("No images to preview yet.")