File size: 19,880 Bytes
1572190
d54454e
1c13732
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1572190
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c13732
 
1572190
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
# UPLOAD FUNCTIONS.PY
import requests
import gradio as gr
import pandas as pd
import tiktoken
import tempfile
from PyPDF2 import PdfReader
from tqdm import tqdm
from pydantic import BaseModel, Field
from phi.agent import Agent, RunResponse
from phi.model.groq import Groq
from sentence_transformers import SentenceTransformer
from sentence_transformers import CrossEncoder
#from gradio_client import Client, handle_file
import os
from pptx import Presentation
from pptx2img import PPTXConverter # For splitting slides
import uuid
import shutil
from PIL import Image
import pandas as pd
import requests
import gradio as gr
from pydantic import BaseModel, Field
from typing import List
import tiktoken
from datetime import datetime
import zipfile
from PIL import Image
import gradio as gr
import threading
import time
import requests
def get_access_token():
    flow = app.initiate_device_flow(scopes=SCOPES)
    print("Go to", flow["verification_uri"])
    print("Enter the code:", flow["user_code"])

    result = app.acquire_token_by_device_flow(flow)

    if "access_token" not in result:
        print("❌ Could not acquire token:", result.get("error_description"))
        exit()

    return result["access_token"]
# Function to generate a unique PPT ID
def generate_unique_ppt_id():
    return str(uuid.uuid4())[:8]  # Generate an 8-character unique ID



def truncate_text_to_tokens(text, max_tokens, model_name="cl100k_base"):
    encoding = tiktoken.get_encoding(model_name)
    tokens = encoding.encode(text)
    truncated_tokens = tokens[:max_tokens]
    return encoding.decode(truncated_tokens)

def split_and_convert_ppt(file_path, output_folder_slides, output_folder_images):
    os.makedirs(output_folder_slides, exist_ok=True)
    os.makedirs(output_folder_images, exist_ok=True)

    presentation = Presentation(file_path)
    slide_texts = []
    file_name = os.path.basename(file_path).split('.')[0]
    print('File Name ',file_name)
    print('File Path  ',file_path)
    for i in range(len(presentation.slides)):
        unique_slide_id = f"{file_name}_{ppt_unique_id}_slide_{i + 1}"
        slide_file_path = os.path.join(output_folder_slides, f"{unique_slide_id}.pptx")
        print('Slide_file_path',slide_file_path)
        image_path = os.path.join(output_folder_images, f"{unique_slide_id}_slide_1.png") # refer to pptx2img  it stores iamge in this format new_name = f"{pptx_name}_slide_{idx + 1}.png"
        print('Image file path',image_path)


        # βœ… Step 1: Create a single-slide PPTX
        new_presentation = Presentation(file_path)
        slide_indexes_to_remove = [j for j in range(len(new_presentation.slides)) if j != i]
        for idx in sorted(slide_indexes_to_remove, reverse=True):
            r_id = new_presentation.slides._sldIdLst[idx].rId
            new_presentation.part.drop_rel(r_id)
            del new_presentation.slides._sldIdLst[idx]
        new_presentation.save(slide_file_path)
        del new_presentation

        # βœ… Step 2: Convert the single-slide PPTX to image
        converter = PPTXConverter()
        converter.convert_pptx_to_images(slide_file_path, output_folder_images)
        print(f"Slide {i+1} converted to image: {image_path}")

        # βœ… Step 3: Extract text from the slide image # Switching off OCR
        #slide_text = extract_text_from_image(image_path)

        #using PPTX for text extraction(actualy its quality is better then tesseratct)
        #  Extract text using python-pptx (editable text)
        slide = presentation.slides[i]
        pptx_text = ""
        for shape in slide.shapes:
            if hasattr(shape, "text"):
                pptx_text += shape.text.strip() + "\n"
        print(f"πŸ”‘ PPTX Text Extractedfrom slide {i + 1}:\n", pptx_text.strip())
        slide_texts.append(pptx_text.strip())


    return slide_texts
def generate_metadata_with_retry(full_text, retries=3, max_tokens=5000, decrement=100, model_name="cl100k_base"):
    for attempt in range(1, retries + 2):
        try:
            truncated_text = truncate_text_to_tokens(full_text, max_tokens, model_name)
            print(f"πŸ” Attempt {attempt}: Generating metadata with ~{count_tokens(truncated_text)} tokens...")
            metadata = generate_metadata(truncated_text)
            print("πŸ“ Metadata generated successfully.")
            return metadata  # βœ… Return on success
        except Exception as e:
            print(f"❌ Error on attempt {attempt}: {str(e)}")
            if attempt == retries + 1:
                print("🚨 Max retries reached. Metadata generation failed.")
                return None
            else:
                max_tokens -= decrement
                print(f"πŸ”„ Retrying with {max_tokens} tokens...")

# Function to generate metadata using phidata agent
def generate_metadata(ocr_text):
    # Initialize the Agent with detailed instructions
    metadata_agent = Agent(
        name="Metadata Generator",
        role="Generates structured metadata for presentations based on their content.",
        instructions=[
            "Your task is to analyze the provided text and generate structured metadata for the presentation.",
            "Carefully evaluate the content to determine the most appropriate values for each metadata field.",

            # Rule 1: PPT Unique ID
            "For the 'PPT_Unique_ID', use the first 8 characters of the MD5 hash of the input text. "
            "This ensures uniqueness across presentations.",

            # Rule 2: Suitable Title
            "For the 'Suitable_Title', create a concise and meaningful title that captures the essence of the presentation. "
            "Focus on first slide where title of presentation is given along with key themes, topics, or keywords mentioned in the text.",

            # Rule 3: Slide Category
            "For the 'Slide_Category', classify the presentation into one of the following categories: "
            "The category or theme of the slides (e.g., Risk management , Data Analytics , Technology etc)"
            "Base your decision on the overall theme or subject matter of the content.",
            # Rule 4 :PPT owner
            "Find The owner of the presentation ie who makes the presentation (eg: Done by name and designation ie Mr. baswaraj ,Princpial ADG , Additional Director ,or organisations like NCTC,DG Systems, Directorate of Logistics etc)"
            "Dont Asssume if u could not found ,mention Not Available"
            # Rule 5: Audience/Forum
            "For the 'Audience_Forum', identify the target audience or forum for the presentation. "

            "(e.g.,NACIN , WCO, Presentation before Member (CBIC)etc )."
            "Dont Asssume if could not found ,mention Not Available"
            "Consider the tone, language, and purpose of the content.",

            # Rule 6: Short Summary
            "For the 'Short_Summary', provide a brief summary of the presentation's content with all keywords  in 10 sentences. "
            "Highlight the keywords ,topics, main points or objectives of the presentation.",
            "Mention the title also in the short summary ,owner and audience of the presentation"

            # General Guidelines
            "Ensure all fields are filled and meaningful. If unsure about a field, make an educated guess based on the context.",

            ],
        model=Groq(id="deepseek-r1-distill-llama-70b"),  # Replace with actual model ID
        response_model=PPTMetadata,
        markdown=True,
        debug_mode=True,
        show_tool_calls=True,
        monitoring=True)

    # Run the agent to generate metadata
    response = metadata_agent.run(
       f"Generate data fields  for the following presentation content: {ocr_text}")
    return response.content

# Function to get folder ID in OneDrive
def get_folder_id(folder_path, headers):
    folders = folder_path.split("/")
    parent_id = None
    print("creating folder id for ",folder_path)

    for folder_name in folders:
        url = f"https://graph.microsoft.com/v1.0/me/drive/root/children" if not parent_id else f"https://graph.microsoft.com/v1.0/me/drive/items/{parent_id}/children"
        response = requests.get(url, headers=headers)

        if response.status_code != 200:
            print(f"Failed to retrieve folder '{folder_name}'. Error: {response.text}")
            return None

        items = response.json().get("value", [])
        folder_item = next((item for item in items if item["name"] == folder_name and "folder" in item), None)

        if not folder_item:
            # Create the folder if it doesn't exist
            create_url = "https://graph.microsoft.com/v1.0/me/drive/root/children" if not parent_id else f"https://graph.microsoft.com/v1.0/me/drive/items/{parent_id}/children"
            create_response = requests.post(create_url, headers=headers, json={
                "name": folder_name,
                "folder": {},
                "@microsoft.graph.conflictBehavior": "rename"
            })

            if create_response.status_code not in [200, 201]:
                print(f"Failed to create folder '{folder_name}'. Error: {create_response.text}")
                return None

            folder_item = create_response.json()

        parent_id = folder_item["id"]

    return parent_id

# Function to upload file to OneDrive
def upload_to_onedrive(file_path, folder_id, headers):
    file_name = os.path.basename(file_path)
    upload_url = f"https://graph.microsoft.com/v1.0/me/drive/items/{folder_id}:/{file_name}:/content"

    with open(file_path, "rb") as file:
        file_content = file.read()

    response = requests.put(upload_url, headers=headers, data=file_content)

    if response.status_code in [200, 201]:
        print(f"Uploaded {file_name} to OneDrive.")
        return response.json()["id"]
    else:
        print(f"Failed to upload {file_name}. Error: {response.text}")
        return None
# Function to count tokens using tiktoken
def count_tokens(text, model_name="cl100k_base"):
    encoding = tiktoken.get_encoding(model_name)
    tokens = encoding.encode(text)
    return len(tokens)


def list_folder_files(folder_id, headers):
    url = f"https://graph.microsoft.com/v1.0/me/drive/items/{folder_id}/children"
    response = requests.get(url, headers=headers)
    if response.status_code != 200:
        raise ValueError(f"Failed to list folder contents. Error: {response.text}")
    return response.json().get("value", [])

def download_onedrive_file(file_id, filename, headers):
    url = f"https://graph.microsoft.com/v1.0/me/drive/items/{file_id}"
    r = requests.get(url, headers=headers).json()
    download_url = r.get("@microsoft.graph.downloadUrl")
    response = requests.get(download_url)
    with open(filename, 'wb') as f:
        f.write(response.content)

def update_and_upload_metadata_simplified(metadata_list, metadata_folder_id, metadata_with_fulltext_folder_id, headers):
    df_new = pd.DataFrame(metadata_list, columns=[
        "Unique_Slide_ID", "Slide_OCR_Text", "PPT_OCR_Text", "Slide_Embedding", "Short_Summary_Embedding",
        "PPT_Unique_ID", "Suitable_Title", "Slide_Category", "PPT_Owner", "Audience_Forum", "Short_Summary",
        "Slide_File_Path", "Slide_File_ID", "Full_PPT_File_Path", "Full_PPT_File_ID",
        "Thumbnail_File_Path", "Thumbnail_File_ID","Upload_date"])

    for csv_file, folder_id, drop_column in [
        ("Master_metadata.csv", metadata_folder_id, 'PPT_OCR_Text'),
        ("Master_fulltext_metadata.csv", metadata_with_fulltext_folder_id, None)]:
        #folder_id = get_folder_id(folder_path, headers)
        files = list_folder_files(folder_id, headers)

        file_item = next((item for item in files if item['name'] == csv_file), None)
        print('File items', file_item)
        if file_item:
            download_onedrive_file(file_item['id'], csv_file, headers)
            df_existing = pd.read_csv(csv_file)
            df_merged = pd.concat([df_existing, df_new], ignore_index=True)
        else:
            df_merged = df_new

        if drop_column:
            df_merged = df_merged.drop(columns=[drop_column])

        df_merged.to_csv(csv_file, index=False)
        upload_to_onedrive(csv_file, folder_id, headers)
        print(f"βœ… Uploaded: {csv_file}")

    return "βœ…PPT Processing and  Metadata update complete!"
# Main processing function
def process_presentation(file):
    try:
        # Step 0: Validate file format
        file_path = file.name if hasattr(file, "name") else file
        file_extension = os.path.splitext(file_path)[-1].lower()
        gr.Info()
        if file_extension not in ['.pptx']:
            raise ValueError("Unsupported file format. Please upload .pptx")
         # Extract the base file name (without extension)
        file_name = os.path.basename(file_path).split('.')[0]
        print('File Name ',file_name)
        # Step 1: Generate unique PPT ID
        global ppt_unique_id
        ppt_unique_id = generate_unique_ppt_id()
        upload_date = datetime.now().strftime('%Y-%m-%d')
        # Step 2: Acquire access token via device flow
        # access_token = get_access_token()
        # print('access_token',access_token)

        print('PPT_unique id',ppt_unique_id)
        # Step 3: Get folder IDs for OneDrive


        # headers = {
        #     "Authorization": f"Bearer {access_token}",
        #     "Content-Type": "application/json"
        # }
        gr.Info('Connecting to OneDrive..')
        ppt_repo_folder_id = get_folder_id("Projects Apps/PPT Maker/ppt_repo", headers)
        slides_repo_folder_id = get_folder_id("Projects Apps/PPT Maker/slides_repo", headers)
        slide_image_repo_folder_id = get_folder_id("Projects Apps/PPT Maker/slide_image_repo", headers)
        metadata_folder_id=get_folder_id('Projects Apps/PPT Maker/Metadata_file',headers)
        metadata_with_fulltext_folder_id=get_folder_id('Projects Apps/PPT Maker/Metadata_with_fulltext',headers)
        print('ppt_repo_folder_id',ppt_repo_folder_id)
        print('slides_repo_folder_id',slides_repo_folder_id)
        print('slide_image_repo_folder_id',slide_image_repo_folder_id)
        print('metadata_folder_id',metadata_folder_id)
        if not (ppt_repo_folder_id and slides_repo_folder_id and slide_image_repo_folder_id and metadata_folder_id) :
            gr.Error('Could not find or create required folders in OneDrive.')
            raise ValueError("Could not find or create required folders in OneDrive.")
        # Step 2: Upload the full PPT file to OneDrive
        #ppt_repo_folder_id = get_folder_id("Projects Apps/PPT Maker/ppt_repo")
        # βœ… Step: Check if file already exists in ppt_repo
        existing_files = list_folder_files(ppt_repo_folder_id, headers)
        ppt_file_name = os.path.basename(file_path)

        if any(item['name'] == ppt_file_name for item in existing_files):
            gr.Error('⚠️ A file named ' + ppt_file_name + ' already exists in the PPT repository. Please rename your file or delete the existing one before re-uploading.')
            return f"⚠️ A file named '{ppt_file_name}' already exists in the PPT repository. Please rename your file or delete the existing one before re-uploading."

        full_ppt_file_id = upload_to_onedrive(file_path, ppt_repo_folder_id,headers)
        gr.Info('PPT uploaded  to OneDrive..')
        full_ppt_file_name = os.path.basename(file_path)
        full_ppt_file_path = f"/Projects Apps/PPT Maker/ppt_repo/{full_ppt_file_name}"

        # Step 3: Split PPT into individual slides and convert to images
        gr.Info('Processing the PPT and indexing ..it may take a while ')
        temp_output_folder_slides = "/temp/temp_slides"
        temp_output_folder_images = "/temp/temp_images"
        slide_texts = split_and_convert_ppt(file_path, temp_output_folder_slides, temp_output_folder_images)
        print('PPT splitted and converted successfully')

        # Compile full OCR text
        full_text = "\n".join(slide_texts)
        gr.Info('AI agent processing the data .')
        metadata = generate_metadata_with_retry(full_text, retries=3, max_tokens=5000, decrement=100, model_name="cl100k_base")


        # Step 5: Process each slide and prepare metadata for storage
        #slides_repo_folder_id = get_folder_id("Projects Apps/PPT Maker/slides_repo")
        #slide_image_repo_folder_id = get_folder_id("Projects Apps/PPT Maker/slide_image_repo")
        metadata_list = []
        gr.Info('Uploading the individual slides and images into repo ')
        for i, slide_text in enumerate(slide_texts):
            unique_slide_id = f"{file_name}_{ppt_unique_id}_slide_{i + 1}"
            slide_file_path = f"{temp_output_folder_slides}/{unique_slide_id}.pptx"
            slide_image_path = f"{temp_output_folder_images}/{unique_slide_id}_slide_1.png"

            # Upload individual slide (.pptx) to slides_repo
            slide_file_id = upload_to_onedrive(slide_file_path, slides_repo_folder_id,headers)
            slide_file_path_onedrive = f"/Projects Apps/PPT Maker/slides_repo/{unique_slide_id}.pptx"
            print(f'Slide{i} uploaded into Onedrive')
            # Upload slide image (.png) to slide_image_repo
            thumbnail_file_id = upload_to_onedrive(slide_image_path, slide_image_repo_folder_id,headers)
            thumbnail_file_path_onedrive = f"/Projects Apps/PPT Maker/slide_image_repo/{unique_slide_id}.png"
            print(f'Image{i} uploaded into Onedrive')
            # Generate embedding for the slide
            slide_embedding = embedding_model.encode(slide_text).tolist()
            short_summary_embedding = embedding_model.encode(metadata.Short_Summary).tolist()

            # Prepare metadata for storage
            metadata_list.append([
                unique_slide_id,               # Unique Slide ID
                slide_text,                    # Slide OCR Text
                full_text,                     # PPT OCR Text
                str(slide_embedding),                # Embedding
                str(short_summary_embedding),
                ppt_unique_id,        # PPT Unique ID
                metadata.Suitable_Title,       # Suitable Title
                metadata.Slide_Category,       # Slide Category
                metadata.PPT_Owner,       # PPT Owner
                metadata.Audience_Forum,       # Audience Forum
                metadata.Short_Summary,        # Short Summary
                slide_file_path_onedrive,      # Slide File Path (.pptx)
                slide_file_id,                 # Slide File ID (.pptx)
                full_ppt_file_path,            # Full PPT File Path
                full_ppt_file_id,              # Full PPT File ID
                thumbnail_file_path_onedrive,  # Thumbnail File Path (.png)
                thumbnail_file_id    ,          # Thumbnail File ID (.png)
                upload_date                     # upload date
            ])

            # Clean up temporary files for this slide
            os.remove(slide_file_path)
            os.remove(slide_image_path)
            print('Slides cleared from temp')
        # # Clean up temporary folders
        # os.rmdir(temp_output_folder_slides)
        # os.rmdir(temp_output_folder_images)

        # Clean up temporary folders (forcefully deletes all contents inside)
        shutil.rmtree(temp_output_folder_slides, ignore_errors=True)
        shutil.rmtree(temp_output_folder_images, ignore_errors=True)
        print('Temp folders cleared')
        gr.Info('Vectorising the meta data  and uploading in Onedrive..')
        return update_and_upload_metadata_simplified(
            metadata_list,
            metadata_folder_id,
            metadata_with_fulltext_folder_id,
            headers
        )
    except Exception as e:
        return f"An error occurred: {str(e)}"