Spaces:
Running
Running
File size: 19,880 Bytes
1572190 d54454e 1c13732 1572190 1c13732 1572190 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 |
# UPLOAD FUNCTIONS.PY
import requests
import gradio as gr
import pandas as pd
import tiktoken
import tempfile
from PyPDF2 import PdfReader
from tqdm import tqdm
from pydantic import BaseModel, Field
from phi.agent import Agent, RunResponse
from phi.model.groq import Groq
from sentence_transformers import SentenceTransformer
from sentence_transformers import CrossEncoder
#from gradio_client import Client, handle_file
import os
from pptx import Presentation
from pptx2img import PPTXConverter # For splitting slides
import uuid
import shutil
from PIL import Image
import pandas as pd
import requests
import gradio as gr
from pydantic import BaseModel, Field
from typing import List
import tiktoken
from datetime import datetime
import zipfile
from PIL import Image
import gradio as gr
import threading
import time
import requests
def get_access_token():
flow = app.initiate_device_flow(scopes=SCOPES)
print("Go to", flow["verification_uri"])
print("Enter the code:", flow["user_code"])
result = app.acquire_token_by_device_flow(flow)
if "access_token" not in result:
print("β Could not acquire token:", result.get("error_description"))
exit()
return result["access_token"]
# Function to generate a unique PPT ID
def generate_unique_ppt_id():
return str(uuid.uuid4())[:8] # Generate an 8-character unique ID
def truncate_text_to_tokens(text, max_tokens, model_name="cl100k_base"):
encoding = tiktoken.get_encoding(model_name)
tokens = encoding.encode(text)
truncated_tokens = tokens[:max_tokens]
return encoding.decode(truncated_tokens)
def split_and_convert_ppt(file_path, output_folder_slides, output_folder_images):
os.makedirs(output_folder_slides, exist_ok=True)
os.makedirs(output_folder_images, exist_ok=True)
presentation = Presentation(file_path)
slide_texts = []
file_name = os.path.basename(file_path).split('.')[0]
print('File Name ',file_name)
print('File Path ',file_path)
for i in range(len(presentation.slides)):
unique_slide_id = f"{file_name}_{ppt_unique_id}_slide_{i + 1}"
slide_file_path = os.path.join(output_folder_slides, f"{unique_slide_id}.pptx")
print('Slide_file_path',slide_file_path)
image_path = os.path.join(output_folder_images, f"{unique_slide_id}_slide_1.png") # refer to pptx2img it stores iamge in this format new_name = f"{pptx_name}_slide_{idx + 1}.png"
print('Image file path',image_path)
# β
Step 1: Create a single-slide PPTX
new_presentation = Presentation(file_path)
slide_indexes_to_remove = [j for j in range(len(new_presentation.slides)) if j != i]
for idx in sorted(slide_indexes_to_remove, reverse=True):
r_id = new_presentation.slides._sldIdLst[idx].rId
new_presentation.part.drop_rel(r_id)
del new_presentation.slides._sldIdLst[idx]
new_presentation.save(slide_file_path)
del new_presentation
# β
Step 2: Convert the single-slide PPTX to image
converter = PPTXConverter()
converter.convert_pptx_to_images(slide_file_path, output_folder_images)
print(f"Slide {i+1} converted to image: {image_path}")
# β
Step 3: Extract text from the slide image # Switching off OCR
#slide_text = extract_text_from_image(image_path)
#using PPTX for text extraction(actualy its quality is better then tesseratct)
# Extract text using python-pptx (editable text)
slide = presentation.slides[i]
pptx_text = ""
for shape in slide.shapes:
if hasattr(shape, "text"):
pptx_text += shape.text.strip() + "\n"
print(f"π‘ PPTX Text Extractedfrom slide {i + 1}:\n", pptx_text.strip())
slide_texts.append(pptx_text.strip())
return slide_texts
def generate_metadata_with_retry(full_text, retries=3, max_tokens=5000, decrement=100, model_name="cl100k_base"):
for attempt in range(1, retries + 2):
try:
truncated_text = truncate_text_to_tokens(full_text, max_tokens, model_name)
print(f"π Attempt {attempt}: Generating metadata with ~{count_tokens(truncated_text)} tokens...")
metadata = generate_metadata(truncated_text)
print("π Metadata generated successfully.")
return metadata # β
Return on success
except Exception as e:
print(f"β Error on attempt {attempt}: {str(e)}")
if attempt == retries + 1:
print("π¨ Max retries reached. Metadata generation failed.")
return None
else:
max_tokens -= decrement
print(f"π Retrying with {max_tokens} tokens...")
# Function to generate metadata using phidata agent
def generate_metadata(ocr_text):
# Initialize the Agent with detailed instructions
metadata_agent = Agent(
name="Metadata Generator",
role="Generates structured metadata for presentations based on their content.",
instructions=[
"Your task is to analyze the provided text and generate structured metadata for the presentation.",
"Carefully evaluate the content to determine the most appropriate values for each metadata field.",
# Rule 1: PPT Unique ID
"For the 'PPT_Unique_ID', use the first 8 characters of the MD5 hash of the input text. "
"This ensures uniqueness across presentations.",
# Rule 2: Suitable Title
"For the 'Suitable_Title', create a concise and meaningful title that captures the essence of the presentation. "
"Focus on first slide where title of presentation is given along with key themes, topics, or keywords mentioned in the text.",
# Rule 3: Slide Category
"For the 'Slide_Category', classify the presentation into one of the following categories: "
"The category or theme of the slides (e.g., Risk management , Data Analytics , Technology etc)"
"Base your decision on the overall theme or subject matter of the content.",
# Rule 4 :PPT owner
"Find The owner of the presentation ie who makes the presentation (eg: Done by name and designation ie Mr. baswaraj ,Princpial ADG , Additional Director ,or organisations like NCTC,DG Systems, Directorate of Logistics etc)"
"Dont Asssume if u could not found ,mention Not Available"
# Rule 5: Audience/Forum
"For the 'Audience_Forum', identify the target audience or forum for the presentation. "
"(e.g.,NACIN , WCO, Presentation before Member (CBIC)etc )."
"Dont Asssume if could not found ,mention Not Available"
"Consider the tone, language, and purpose of the content.",
# Rule 6: Short Summary
"For the 'Short_Summary', provide a brief summary of the presentation's content with all keywords in 10 sentences. "
"Highlight the keywords ,topics, main points or objectives of the presentation.",
"Mention the title also in the short summary ,owner and audience of the presentation"
# General Guidelines
"Ensure all fields are filled and meaningful. If unsure about a field, make an educated guess based on the context.",
],
model=Groq(id="deepseek-r1-distill-llama-70b"), # Replace with actual model ID
response_model=PPTMetadata,
markdown=True,
debug_mode=True,
show_tool_calls=True,
monitoring=True)
# Run the agent to generate metadata
response = metadata_agent.run(
f"Generate data fields for the following presentation content: {ocr_text}")
return response.content
# Function to get folder ID in OneDrive
def get_folder_id(folder_path, headers):
folders = folder_path.split("/")
parent_id = None
print("creating folder id for ",folder_path)
for folder_name in folders:
url = f"https://graph.microsoft.com/v1.0/me/drive/root/children" if not parent_id else f"https://graph.microsoft.com/v1.0/me/drive/items/{parent_id}/children"
response = requests.get(url, headers=headers)
if response.status_code != 200:
print(f"Failed to retrieve folder '{folder_name}'. Error: {response.text}")
return None
items = response.json().get("value", [])
folder_item = next((item for item in items if item["name"] == folder_name and "folder" in item), None)
if not folder_item:
# Create the folder if it doesn't exist
create_url = "https://graph.microsoft.com/v1.0/me/drive/root/children" if not parent_id else f"https://graph.microsoft.com/v1.0/me/drive/items/{parent_id}/children"
create_response = requests.post(create_url, headers=headers, json={
"name": folder_name,
"folder": {},
"@microsoft.graph.conflictBehavior": "rename"
})
if create_response.status_code not in [200, 201]:
print(f"Failed to create folder '{folder_name}'. Error: {create_response.text}")
return None
folder_item = create_response.json()
parent_id = folder_item["id"]
return parent_id
# Function to upload file to OneDrive
def upload_to_onedrive(file_path, folder_id, headers):
file_name = os.path.basename(file_path)
upload_url = f"https://graph.microsoft.com/v1.0/me/drive/items/{folder_id}:/{file_name}:/content"
with open(file_path, "rb") as file:
file_content = file.read()
response = requests.put(upload_url, headers=headers, data=file_content)
if response.status_code in [200, 201]:
print(f"Uploaded {file_name} to OneDrive.")
return response.json()["id"]
else:
print(f"Failed to upload {file_name}. Error: {response.text}")
return None
# Function to count tokens using tiktoken
def count_tokens(text, model_name="cl100k_base"):
encoding = tiktoken.get_encoding(model_name)
tokens = encoding.encode(text)
return len(tokens)
def list_folder_files(folder_id, headers):
url = f"https://graph.microsoft.com/v1.0/me/drive/items/{folder_id}/children"
response = requests.get(url, headers=headers)
if response.status_code != 200:
raise ValueError(f"Failed to list folder contents. Error: {response.text}")
return response.json().get("value", [])
def download_onedrive_file(file_id, filename, headers):
url = f"https://graph.microsoft.com/v1.0/me/drive/items/{file_id}"
r = requests.get(url, headers=headers).json()
download_url = r.get("@microsoft.graph.downloadUrl")
response = requests.get(download_url)
with open(filename, 'wb') as f:
f.write(response.content)
def update_and_upload_metadata_simplified(metadata_list, metadata_folder_id, metadata_with_fulltext_folder_id, headers):
df_new = pd.DataFrame(metadata_list, columns=[
"Unique_Slide_ID", "Slide_OCR_Text", "PPT_OCR_Text", "Slide_Embedding", "Short_Summary_Embedding",
"PPT_Unique_ID", "Suitable_Title", "Slide_Category", "PPT_Owner", "Audience_Forum", "Short_Summary",
"Slide_File_Path", "Slide_File_ID", "Full_PPT_File_Path", "Full_PPT_File_ID",
"Thumbnail_File_Path", "Thumbnail_File_ID","Upload_date"])
for csv_file, folder_id, drop_column in [
("Master_metadata.csv", metadata_folder_id, 'PPT_OCR_Text'),
("Master_fulltext_metadata.csv", metadata_with_fulltext_folder_id, None)]:
#folder_id = get_folder_id(folder_path, headers)
files = list_folder_files(folder_id, headers)
file_item = next((item for item in files if item['name'] == csv_file), None)
print('File items', file_item)
if file_item:
download_onedrive_file(file_item['id'], csv_file, headers)
df_existing = pd.read_csv(csv_file)
df_merged = pd.concat([df_existing, df_new], ignore_index=True)
else:
df_merged = df_new
if drop_column:
df_merged = df_merged.drop(columns=[drop_column])
df_merged.to_csv(csv_file, index=False)
upload_to_onedrive(csv_file, folder_id, headers)
print(f"β
Uploaded: {csv_file}")
return "β
PPT Processing and Metadata update complete!"
# Main processing function
def process_presentation(file):
try:
# Step 0: Validate file format
file_path = file.name if hasattr(file, "name") else file
file_extension = os.path.splitext(file_path)[-1].lower()
gr.Info()
if file_extension not in ['.pptx']:
raise ValueError("Unsupported file format. Please upload .pptx")
# Extract the base file name (without extension)
file_name = os.path.basename(file_path).split('.')[0]
print('File Name ',file_name)
# Step 1: Generate unique PPT ID
global ppt_unique_id
ppt_unique_id = generate_unique_ppt_id()
upload_date = datetime.now().strftime('%Y-%m-%d')
# Step 2: Acquire access token via device flow
# access_token = get_access_token()
# print('access_token',access_token)
print('PPT_unique id',ppt_unique_id)
# Step 3: Get folder IDs for OneDrive
# headers = {
# "Authorization": f"Bearer {access_token}",
# "Content-Type": "application/json"
# }
gr.Info('Connecting to OneDrive..')
ppt_repo_folder_id = get_folder_id("Projects Apps/PPT Maker/ppt_repo", headers)
slides_repo_folder_id = get_folder_id("Projects Apps/PPT Maker/slides_repo", headers)
slide_image_repo_folder_id = get_folder_id("Projects Apps/PPT Maker/slide_image_repo", headers)
metadata_folder_id=get_folder_id('Projects Apps/PPT Maker/Metadata_file',headers)
metadata_with_fulltext_folder_id=get_folder_id('Projects Apps/PPT Maker/Metadata_with_fulltext',headers)
print('ppt_repo_folder_id',ppt_repo_folder_id)
print('slides_repo_folder_id',slides_repo_folder_id)
print('slide_image_repo_folder_id',slide_image_repo_folder_id)
print('metadata_folder_id',metadata_folder_id)
if not (ppt_repo_folder_id and slides_repo_folder_id and slide_image_repo_folder_id and metadata_folder_id) :
gr.Error('Could not find or create required folders in OneDrive.')
raise ValueError("Could not find or create required folders in OneDrive.")
# Step 2: Upload the full PPT file to OneDrive
#ppt_repo_folder_id = get_folder_id("Projects Apps/PPT Maker/ppt_repo")
# β
Step: Check if file already exists in ppt_repo
existing_files = list_folder_files(ppt_repo_folder_id, headers)
ppt_file_name = os.path.basename(file_path)
if any(item['name'] == ppt_file_name for item in existing_files):
gr.Error('β οΈ A file named ' + ppt_file_name + ' already exists in the PPT repository. Please rename your file or delete the existing one before re-uploading.')
return f"β οΈ A file named '{ppt_file_name}' already exists in the PPT repository. Please rename your file or delete the existing one before re-uploading."
full_ppt_file_id = upload_to_onedrive(file_path, ppt_repo_folder_id,headers)
gr.Info('PPT uploaded to OneDrive..')
full_ppt_file_name = os.path.basename(file_path)
full_ppt_file_path = f"/Projects Apps/PPT Maker/ppt_repo/{full_ppt_file_name}"
# Step 3: Split PPT into individual slides and convert to images
gr.Info('Processing the PPT and indexing ..it may take a while ')
temp_output_folder_slides = "/temp/temp_slides"
temp_output_folder_images = "/temp/temp_images"
slide_texts = split_and_convert_ppt(file_path, temp_output_folder_slides, temp_output_folder_images)
print('PPT splitted and converted successfully')
# Compile full OCR text
full_text = "\n".join(slide_texts)
gr.Info('AI agent processing the data .')
metadata = generate_metadata_with_retry(full_text, retries=3, max_tokens=5000, decrement=100, model_name="cl100k_base")
# Step 5: Process each slide and prepare metadata for storage
#slides_repo_folder_id = get_folder_id("Projects Apps/PPT Maker/slides_repo")
#slide_image_repo_folder_id = get_folder_id("Projects Apps/PPT Maker/slide_image_repo")
metadata_list = []
gr.Info('Uploading the individual slides and images into repo ')
for i, slide_text in enumerate(slide_texts):
unique_slide_id = f"{file_name}_{ppt_unique_id}_slide_{i + 1}"
slide_file_path = f"{temp_output_folder_slides}/{unique_slide_id}.pptx"
slide_image_path = f"{temp_output_folder_images}/{unique_slide_id}_slide_1.png"
# Upload individual slide (.pptx) to slides_repo
slide_file_id = upload_to_onedrive(slide_file_path, slides_repo_folder_id,headers)
slide_file_path_onedrive = f"/Projects Apps/PPT Maker/slides_repo/{unique_slide_id}.pptx"
print(f'Slide{i} uploaded into Onedrive')
# Upload slide image (.png) to slide_image_repo
thumbnail_file_id = upload_to_onedrive(slide_image_path, slide_image_repo_folder_id,headers)
thumbnail_file_path_onedrive = f"/Projects Apps/PPT Maker/slide_image_repo/{unique_slide_id}.png"
print(f'Image{i} uploaded into Onedrive')
# Generate embedding for the slide
slide_embedding = embedding_model.encode(slide_text).tolist()
short_summary_embedding = embedding_model.encode(metadata.Short_Summary).tolist()
# Prepare metadata for storage
metadata_list.append([
unique_slide_id, # Unique Slide ID
slide_text, # Slide OCR Text
full_text, # PPT OCR Text
str(slide_embedding), # Embedding
str(short_summary_embedding),
ppt_unique_id, # PPT Unique ID
metadata.Suitable_Title, # Suitable Title
metadata.Slide_Category, # Slide Category
metadata.PPT_Owner, # PPT Owner
metadata.Audience_Forum, # Audience Forum
metadata.Short_Summary, # Short Summary
slide_file_path_onedrive, # Slide File Path (.pptx)
slide_file_id, # Slide File ID (.pptx)
full_ppt_file_path, # Full PPT File Path
full_ppt_file_id, # Full PPT File ID
thumbnail_file_path_onedrive, # Thumbnail File Path (.png)
thumbnail_file_id , # Thumbnail File ID (.png)
upload_date # upload date
])
# Clean up temporary files for this slide
os.remove(slide_file_path)
os.remove(slide_image_path)
print('Slides cleared from temp')
# # Clean up temporary folders
# os.rmdir(temp_output_folder_slides)
# os.rmdir(temp_output_folder_images)
# Clean up temporary folders (forcefully deletes all contents inside)
shutil.rmtree(temp_output_folder_slides, ignore_errors=True)
shutil.rmtree(temp_output_folder_images, ignore_errors=True)
print('Temp folders cleared')
gr.Info('Vectorising the meta data and uploading in Onedrive..')
return update_and_upload_metadata_simplified(
metadata_list,
metadata_folder_id,
metadata_with_fulltext_folder_id,
headers
)
except Exception as e:
return f"An error occurred: {str(e)}"
|