File size: 45,698 Bytes
c2c4f7c
 
 
 
 
 
54ce8b2
c2c4f7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ddd4c88
 
 
 
c2c4f7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
840e280
c2c4f7c
 
 
 
263f126
 
 
c2c4f7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54ce8b2
 
 
 
c2c4f7c
54ce8b2
 
 
c5760ec
 
 
 
563692a
ddd4c88
e9bbfe8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6654000
e9bbfe8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db4781c
e9bbfe8
 
 
ddd4c88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2c4f7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
840e280
c2c4f7c
 
 
563692a
c5760ec
563692a
 
c5760ec
c2c4f7c
c5760ec
 
5cc8a26
c2c4f7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9743563
 
 
 
 
73b7093
9743563
 
c2c4f7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5cc8a26
c2c4f7c
 
5a2afdf
c2c4f7c
 
859fba7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
# APP.PY
from msal import PublicClientApplication
import requests
import gradio as gr
import pandas as pd
import tiktoken
import tempfile
from PyPDF2 import PdfReader
from tqdm import tqdm
from pydantic import BaseModel, Field
from phi.agent import Agent, RunResponse
from phi.model.groq import Groq
from sentence_transformers import SentenceTransformer
from sentence_transformers import CrossEncoder
#from gradio_client import Client, handle_file
import os
from pptx import Presentation
from pptx2img import PPTXConverter # For splitting slides
import uuid
import shutil
from PIL import Image
import pandas as pd
import requests
import gradio as gr
from pydantic import BaseModel, Field
from typing import List
import tiktoken
from datetime import datetime
import zipfile
from PIL import Image
import gradio as gr
import threading
import time

# Importing functions from files
# from upload_function import process_presentation,get_folder_id
# from view_ppt import search_ppts
# from stats_dashboard import get_dashboard_stats ,update_dashboard
# from search_slides import search_slides,combine_slides_as_zip
# Configure Microsoft Authentication
# Access secrets securely
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
CLIENT_ID = os.getenv("CLIENT_ID")
TENANT_ID = os.getenv("TENANT_ID")
ADMIN_USERNAME = os.getenv("ADMIN_USERNAME")
ADMIN_PASSWORD = os.getenv("ADMIN_PASSWORD")
AUTHORITY = f"https://login.microsoftonline.com/{TENANT_ID}"
SCOPES = ["Files.ReadWrite.All", "User.Read"]

os.environ["GROQ_API_KEY"] = GROQ_API_KEY
embedding_model = SentenceTransformer('nomic-ai/nomic-embed-text-v1', trust_remote_code=True)
from sentence_transformers import CrossEncoder
cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')  # For reranking)  # For reranking



access_token_state = {"token": None}
flow_state = {"flow": None}
global headers
global df
global search_results
from config import temp_file_path  # Import the global variable
headers = {
    "Authorization": None,
    "Content-Type": "application/json"
}
# Local cache directory for downloaded files
LOCAL_CACHE_DIR = "local_cache"
os.makedirs(LOCAL_CACHE_DIR, exist_ok=True)

app = PublicClientApplication(client_id=CLIENT_ID, authority=AUTHORITY)
# Define Metadata Schema
class PPTMetadata(BaseModel):
    PPT_Unique_ID: str = Field(description="A unique identifier for the presentation (e.g., filename or hash).")
    Suitable_Title: str = Field(description="A concise and meaningful title for the presentation.")
    Slide_Category: str = Field(description="The category or theme of the slides (e.g., Risk management, Data Analytics, Technology etc  ).")
    PPT_Owner:str   =   Field(description="The owner of the presentation ie who makes the presentation  (eg: NCTC,DG Systems, Directorate of Logistics etc ,Not available if not found )")
    Audience_Forum: str = Field(description="The intended audience or forum for the presentation/to whom the presentaiton is made  (e.g., NACIN, WCO, Presentation before Member (CBIC),Not available if not found).")
    Short_Summary: str = Field(description="A brief summary of the presentation's content with all keywords in 10 sentences covering all keywords.")



# Function to download metadata file from OneDrive
def download_metadata_file(metadata_folder_id, headers):
    metadata_file_name = "Master_metadata.csv"
    url = f"https://graph.microsoft.com/v1.0/me/drive/items/{metadata_folder_id}/children"
    response = requests.get(url, headers=headers)

    if response.status_code != 200:
        raise ValueError(f"Failed to list folder contents. Error: {response.text}")

    items = response.json().get("value", [])
    file_item = next((item for item in items if item['name'] == metadata_file_name), None)

    if not file_item:
        raise FileNotFoundError(f"{metadata_file_name} not found in OneDrive folder.")

    download_url = file_item["@microsoft.graph.downloadUrl"]
    response = requests.get(download_url)

    if response.status_code != 200:
        raise ValueError(f"Failed to download {metadata_file_name}. Error: {response.text}")

    # Use tempfile to create a temporary file
    with tempfile.NamedTemporaryFile(delete=False, suffix=".csv") as temp_file:
        temp_file.write(response.content)
        temp_file_path = temp_file.name  # Save the path to the temporary file

    print(f"βœ… Downloaded: {metadata_file_name} to temporary file: {temp_file_path}")

    
    # with open(metadata_file_name, 'wb') as f:
    #     f.write(response.content)

    # print(f"βœ… Downloaded: {metadata_file_name}")
    return temp_file_path 
##################################################### STATS DASHBOARD ##################################################################
def update_dashboard():
        total_ppts, total_slides, chart_data, latest_html = get_dashboard_stats()
        return (
            gr.update(visible=True),
            gr.update(value=f"<div><h3>Total PPTs: {total_ppts}</h3></div>"),
            gr.update(value=f"<div><h3>Total Slides: {total_slides}</h3></div>"),
            gr.update(value=chart_data),
            gr.update(value=latest_html)
        )
import pandas as pd
import gradio as gr
import os
def get_dashboard_stats():
    # Load metadata CSV
    global temp_file_path
    global df
    print('Reading CSV...',temp_file_path)
    #metadata_file_name= "Master_metadata.csv"
    # df = pd.read_csv(metadata_file_name)
    #temp_file_path = os.path.join("/tmp", metadata_file_name)
    df = pd.read_csv(temp_file_path)
    
    # Ensure upload_date column is in datetime format
    df["Upload_date"] = pd.to_datetime(df["Upload_date"], errors="coerce")
    print(df)
    # Total unique PPTs and slides
    total_ppts = df["PPT_Unique_ID"].nunique()
    total_slides = len(df)

    # Monthly PPT uploads
    df["month_year"] = df["Upload_date"].dt.to_period("M").astype(str)
    monthly_stats = df.groupby("month_year")["PPT_Unique_ID"].nunique().reset_index()
    monthly_stats.columns = ["Month", "PPT Uploads"]

    # Gradio BarPlot requires a DataFrame
    chart_data = monthly_stats

    # Latest 5 PPTs by upload date
    latest_df = df.drop_duplicates(subset="PPT_Unique_ID").sort_values("Upload_date", ascending=False)
    latest_5 = latest_df[["Suitable_Title", "Slide_Category","Upload_date"]].head(5)
    # Create HTML for the latest PPTs list
    # Create HTML for the latest PPTs list with heading
    latest_html = "<h4 style='margin-bottom: 8px;'>πŸ“Œ Top 5 Latest Uploaded PPTs</h4><ul style='line-height:1.6em;'>"
    for _, row in latest_5.iterrows():
        title = row["Suitable_Title"]
        category = row["Slide_Category"]
        date_str = row["Upload_date"].strftime("%Y-%m-%d") if pd.notnull(row["Upload_date"]) else "Unknown Date"
        latest_html += f"<li><b>{title}</b> <br><i>{category}</i> β€” <span style='color:gray;'>{date_str}</span></li>"
    latest_html += "</ul>"
    return total_ppts, total_slides, chart_data, latest_html

############################################################# UPLOAD PPT #######################################################################
import requests
def get_access_token():
    flow = app.initiate_device_flow(scopes=SCOPES)
    print("Go to", flow["verification_uri"])
    print("Enter the code:", flow["user_code"])

    result = app.acquire_token_by_device_flow(flow)

    if "access_token" not in result:
        print("❌ Could not acquire token:", result.get("error_description"))
        exit()

    return result["access_token"]
# Function to generate a unique PPT ID
def generate_unique_ppt_id():
    return str(uuid.uuid4())[:8]  # Generate an 8-character unique ID



def truncate_text_to_tokens(text, max_tokens, model_name="cl100k_base"):
    encoding = tiktoken.get_encoding(model_name)
    tokens = encoding.encode(text)
    truncated_tokens = tokens[:max_tokens]
    return encoding.decode(truncated_tokens)

def split_and_convert_ppt(file_path, output_folder_slides, output_folder_images):
    os.makedirs(output_folder_slides, exist_ok=True)
    os.makedirs(output_folder_images, exist_ok=True)

    presentation = Presentation(file_path)
    slide_texts = []
    file_name = os.path.basename(file_path).split('.')[0]
    print('File Name ',file_name)
    print('File Path  ',file_path)
    for i in range(len(presentation.slides)):
        unique_slide_id = f"{file_name}_{ppt_unique_id}_slide_{i + 1}"
        slide_file_path = os.path.join(output_folder_slides, f"{unique_slide_id}.pptx")
        print('Slide_file_path',slide_file_path)
        image_path = os.path.join(output_folder_images, f"{unique_slide_id}_slide_1.png") # refer to pptx2img  it stores iamge in this format new_name = f"{pptx_name}_slide_{idx + 1}.png"
        print('Image file path',image_path)


        # βœ… Step 1: Create a single-slide PPTX
        new_presentation = Presentation(file_path)
        slide_indexes_to_remove = [j for j in range(len(new_presentation.slides)) if j != i]
        for idx in sorted(slide_indexes_to_remove, reverse=True):
            r_id = new_presentation.slides._sldIdLst[idx].rId
            new_presentation.part.drop_rel(r_id)
            del new_presentation.slides._sldIdLst[idx]
        new_presentation.save(slide_file_path)
        del new_presentation

        # βœ… Step 2: Convert the single-slide PPTX to image
        converter = PPTXConverter()
        converter.convert_pptx_to_images(slide_file_path, output_folder_images)
        print(f"Slide {i+1} converted to image: {image_path}")

        # βœ… Step 3: Extract text from the slide image # Switching off OCR
        #slide_text = extract_text_from_image(image_path)

        #using PPTX for text extraction(actualy its quality is better then tesseratct)
        #  Extract text using python-pptx (editable text)
        slide = presentation.slides[i]
        pptx_text = ""
        for shape in slide.shapes:
            if hasattr(shape, "text"):
                pptx_text += shape.text.strip() + "\n"
        print(f"πŸ”‘ PPTX Text Extractedfrom slide {i + 1}:\n", pptx_text.strip())
        slide_texts.append(pptx_text.strip())


    return slide_texts
def generate_metadata_with_retry(full_text, retries=3, max_tokens=5000, decrement=100, model_name="cl100k_base"):
    for attempt in range(1, retries + 2):
        try:
            truncated_text = truncate_text_to_tokens(full_text, max_tokens, model_name)
            print(f"πŸ” Attempt {attempt}: Generating metadata with ~{count_tokens(truncated_text)} tokens...")
            metadata = generate_metadata(truncated_text)
            print("πŸ“ Metadata generated successfully.")
            return metadata  # βœ… Return on success
        except Exception as e:
            print(f"❌ Error on attempt {attempt}: {str(e)}")
            if attempt == retries + 1:
                print("🚨 Max retries reached. Metadata generation failed.")
                return None
            else:
                max_tokens -= decrement
                print(f"πŸ”„ Retrying with {max_tokens} tokens...")

# Function to generate metadata using phidata agent
def generate_metadata(ocr_text):
    # Initialize the Agent with detailed instructions
    metadata_agent = Agent(
        name="Metadata Generator",
        role="Generates structured metadata for presentations based on their content.",
        instructions=[
            "Your task is to analyze the provided text and generate structured metadata for the presentation.",
            "Carefully evaluate the content to determine the most appropriate values for each metadata field.",

            # Rule 1: PPT Unique ID
            "For the 'PPT_Unique_ID', use the first 8 characters of the MD5 hash of the input text. "
            "This ensures uniqueness across presentations.",

            # Rule 2: Suitable Title
            "For the 'Suitable_Title', create a concise and meaningful title that captures the essence of the presentation. "
            "Focus on first slide where title of presentation is given along with key themes, topics, or keywords mentioned in the text.",

            # Rule 3: Slide Category
            "For the 'Slide_Category', classify the presentation into one of the following categories: "
            "The category or theme of the slides (e.g., Risk management , Data Analytics , Technology etc)"
            "Base your decision on the overall theme or subject matter of the content.",
            # Rule 4 :PPT owner
            "Find The owner of the presentation ie who makes the presentation (eg: Done by name and designation ie Mr. baswaraj ,Princpial ADG , Additional Director ,or organisations like NCTC,DG Systems, Directorate of Logistics etc)"
            "Dont Asssume if u could not found ,mention Not Available"
            # Rule 5: Audience/Forum
            "For the 'Audience_Forum', identify the target audience or forum for the presentation. "

            "(e.g.,NACIN , WCO, Presentation before Member (CBIC)etc )."
            "Dont Asssume if could not found ,mention Not Available"
            "Consider the tone, language, and purpose of the content.",

            # Rule 6: Short Summary
            "For the 'Short_Summary', provide a brief summary of the presentation's content with all keywords  in 10 sentences. "
            "Highlight the keywords ,topics, main points or objectives of the presentation.",
            "Mention the title also in the short summary ,owner and audience of the presentation"

            # General Guidelines
            "Ensure all fields are filled and meaningful. If unsure about a field, make an educated guess based on the context.",

            ],
        model=Groq(id="deepseek-r1-distill-llama-70b"),  # Replace with actual model ID
        response_model=PPTMetadata,
        markdown=True,
        debug_mode=True,
        show_tool_calls=True,
        monitoring=True)

    # Run the agent to generate metadata
    response = metadata_agent.run(
       f"Generate data fields  for the following presentation content: {ocr_text}")
    return response.content

# Function to get folder ID in OneDrive
def get_folder_id(folder_path, headers):
    folders = folder_path.split("/")
    parent_id = None
    print("creating folder id for ",folder_path)

    for folder_name in folders:
        url = f"https://graph.microsoft.com/v1.0/me/drive/root/children" if not parent_id else f"https://graph.microsoft.com/v1.0/me/drive/items/{parent_id}/children"
        response = requests.get(url, headers=headers)

        if response.status_code != 200:
            print(f"Failed to retrieve folder '{folder_name}'. Error: {response.text}")
            return None

        items = response.json().get("value", [])
        folder_item = next((item for item in items if item["name"] == folder_name and "folder" in item), None)

        if not folder_item:
            # Create the folder if it doesn't exist
            create_url = "https://graph.microsoft.com/v1.0/me/drive/root/children" if not parent_id else f"https://graph.microsoft.com/v1.0/me/drive/items/{parent_id}/children"
            create_response = requests.post(create_url, headers=headers, json={
                "name": folder_name,
                "folder": {},
                "@microsoft.graph.conflictBehavior": "rename"
            })

            if create_response.status_code not in [200, 201]:
                print(f"Failed to create folder '{folder_name}'. Error: {create_response.text}")
                return None

            folder_item = create_response.json()

        parent_id = folder_item["id"]

    return parent_id

# Function to upload file to OneDrive
def upload_to_onedrive(file_path, folder_id, headers):
    file_name = os.path.basename(file_path)
    upload_url = f"https://graph.microsoft.com/v1.0/me/drive/items/{folder_id}:/{file_name}:/content"

    with open(file_path, "rb") as file:
        file_content = file.read()

    response = requests.put(upload_url, headers=headers, data=file_content)

    if response.status_code in [200, 201]:
        print(f"Uploaded {file_name} to OneDrive.")
        return response.json()["id"]
    else:
        print(f"Failed to upload {file_name}. Error: {response.text}")
        return None
# Function to count tokens using tiktoken
def count_tokens(text, model_name="cl100k_base"):
    encoding = tiktoken.get_encoding(model_name)
    tokens = encoding.encode(text)
    return len(tokens)


def list_folder_files(folder_id, headers):
    url = f"https://graph.microsoft.com/v1.0/me/drive/items/{folder_id}/children"
    response = requests.get(url, headers=headers)
    if response.status_code != 200:
        raise ValueError(f"Failed to list folder contents. Error: {response.text}")
    return response.json().get("value", [])

def download_onedrive_file(file_id, filename, headers):
    url = f"https://graph.microsoft.com/v1.0/me/drive/items/{file_id}"
    r = requests.get(url, headers=headers).json()
    download_url = r.get("@microsoft.graph.downloadUrl")
    response = requests.get(download_url)
    with open(filename, 'wb') as f:
        f.write(response.content)

def update_and_upload_metadata_simplified(metadata_list, metadata_folder_id, metadata_with_fulltext_folder_id, headers):
    df_new = pd.DataFrame(metadata_list, columns=[
        "Unique_Slide_ID", "Slide_OCR_Text", "PPT_OCR_Text", "Slide_Embedding", "Short_Summary_Embedding",
        "PPT_Unique_ID", "Suitable_Title", "Slide_Category", "PPT_Owner", "Audience_Forum", "Short_Summary",
        "Slide_File_Path", "Slide_File_ID", "Full_PPT_File_Path", "Full_PPT_File_ID",
        "Thumbnail_File_Path", "Thumbnail_File_ID","Upload_date"])

    for csv_file, folder_id, drop_column in [
        ("Master_metadata.csv", metadata_folder_id, 'PPT_OCR_Text'),
        ("Master_fulltext_metadata.csv", metadata_with_fulltext_folder_id, None)]:
        #folder_id = get_folder_id(folder_path, headers)
        files = list_folder_files(folder_id, headers)

        file_item = next((item for item in files if item['name'] == csv_file), None)
        print('File items', file_item)
        if file_item:
            download_onedrive_file(file_item['id'], csv_file, headers)
            df_existing = pd.read_csv(csv_file)
            df_merged = pd.concat([df_existing, df_new], ignore_index=True)
        else:
            df_merged = df_new

        if drop_column:
            df_merged = df_merged.drop(columns=[drop_column])

        df_merged.to_csv(csv_file, index=False)
        upload_to_onedrive(csv_file, folder_id, headers)
        print(f"βœ… Uploaded: {csv_file}")

    return "βœ…PPT Processing and  Metadata update complete!"
# Main processing function
def process_presentation(file):
    try:
        # Step 0: Validate file format
        file_path = file.name if hasattr(file, "name") else file
        file_extension = os.path.splitext(file_path)[-1].lower()
        gr.Info()
        if file_extension not in ['.pptx']:
            raise ValueError("Unsupported file format. Please upload .pptx")
         # Extract the base file name (without extension)
        file_name = os.path.basename(file_path).split('.')[0]
        print('File Name ',file_name)
        # Step 1: Generate unique PPT ID
        global ppt_unique_id
        ppt_unique_id = generate_unique_ppt_id()
        upload_date = datetime.now().strftime('%Y-%m-%d')
        # Step 2: Acquire access token via device flow
        # access_token = get_access_token()
        # print('access_token',access_token)

        print('PPT_unique id',ppt_unique_id)
        # Step 3: Get folder IDs for OneDrive


        # headers = {
        #     "Authorization": f"Bearer {access_token}",
        #     "Content-Type": "application/json"
        # }
        gr.Info('Connecting to OneDrive..')
        ppt_repo_folder_id = get_folder_id("Projects Apps/PPT Maker/ppt_repo", headers)
        slides_repo_folder_id = get_folder_id("Projects Apps/PPT Maker/slides_repo", headers)
        slide_image_repo_folder_id = get_folder_id("Projects Apps/PPT Maker/slide_image_repo", headers)
        metadata_folder_id=get_folder_id('Projects Apps/PPT Maker/Metadata_file',headers)
        metadata_with_fulltext_folder_id=get_folder_id('Projects Apps/PPT Maker/Metadata_with_fulltext',headers)
        print('ppt_repo_folder_id',ppt_repo_folder_id)
        print('slides_repo_folder_id',slides_repo_folder_id)
        print('slide_image_repo_folder_id',slide_image_repo_folder_id)
        print('metadata_folder_id',metadata_folder_id)
        if not (ppt_repo_folder_id and slides_repo_folder_id and slide_image_repo_folder_id and metadata_folder_id) :
            gr.Error('Could not find or create required folders in OneDrive.')
            raise ValueError("Could not find or create required folders in OneDrive.")
        # Step 2: Upload the full PPT file to OneDrive
        #ppt_repo_folder_id = get_folder_id("Projects Apps/PPT Maker/ppt_repo")
        # βœ… Step: Check if file already exists in ppt_repo
        existing_files = list_folder_files(ppt_repo_folder_id, headers)
        ppt_file_name = os.path.basename(file_path)

        if any(item['name'] == ppt_file_name for item in existing_files):
            gr.Error('⚠️ A file named ' + ppt_file_name + ' already exists in the PPT repository. Please rename your file or delete the existing one before re-uploading.')
            return f"⚠️ A file named '{ppt_file_name}' already exists in the PPT repository. Please rename your file or delete the existing one before re-uploading."

        full_ppt_file_id = upload_to_onedrive(file_path, ppt_repo_folder_id,headers)
        gr.Info('PPT uploaded  to OneDrive..')
        full_ppt_file_name = os.path.basename(file_path)
        full_ppt_file_path = f"/Projects Apps/PPT Maker/ppt_repo/{full_ppt_file_name}"

        # Step 3: Split PPT into individual slides and convert to images
        gr.Info('Processing the PPT and indexing ..it may take a while ')
        temp_output_folder_slides = "temp_slides"
        temp_output_folder_images = "temp_images"
        slide_texts = split_and_convert_ppt(file_path, temp_output_folder_slides, temp_output_folder_images)
        print('PPT splitted and converted successfully')

        # Compile full OCR text
        full_text = "\n".join(slide_texts)
        gr.Info('AI agent processing the data .')
        metadata = generate_metadata_with_retry(full_text, retries=3, max_tokens=5000, decrement=100, model_name="cl100k_base")


        # Step 5: Process each slide and prepare metadata for storage
        #slides_repo_folder_id = get_folder_id("Projects Apps/PPT Maker/slides_repo")
        #slide_image_repo_folder_id = get_folder_id("Projects Apps/PPT Maker/slide_image_repo")
        metadata_list = []
        gr.Info('Uploading the individual slides and images into repo ')
        for i, slide_text in enumerate(slide_texts):
            unique_slide_id = f"{file_name}_{ppt_unique_id}_slide_{i + 1}"
            slide_file_path = f"{temp_output_folder_slides}/{unique_slide_id}.pptx"
            slide_image_path = f"{temp_output_folder_images}/{unique_slide_id}_slide_1.png"

            # Upload individual slide (.pptx) to slides_repo
            slide_file_id = upload_to_onedrive(slide_file_path, slides_repo_folder_id,headers)
            slide_file_path_onedrive = f"/Projects Apps/PPT Maker/slides_repo/{unique_slide_id}.pptx"
            print(f'Slide{i} uploaded into Onedrive')
            # Upload slide image (.png) to slide_image_repo
            thumbnail_file_id = upload_to_onedrive(slide_image_path, slide_image_repo_folder_id,headers)
            thumbnail_file_path_onedrive = f"/Projects Apps/PPT Maker/slide_image_repo/{unique_slide_id}.png"
            print(f'Image{i} uploaded into Onedrive')
            # Generate embedding for the slide
            slide_embedding = embedding_model.encode(slide_text).tolist()
            short_summary_embedding = embedding_model.encode(metadata.Short_Summary).tolist()

            # Prepare metadata for storage
            metadata_list.append([
                unique_slide_id,               # Unique Slide ID
                slide_text,                    # Slide OCR Text
                full_text,                     # PPT OCR Text
                str(slide_embedding),                # Embedding
                str(short_summary_embedding),
                ppt_unique_id,        # PPT Unique ID
                metadata.Suitable_Title,       # Suitable Title
                metadata.Slide_Category,       # Slide Category
                metadata.PPT_Owner,       # PPT Owner
                metadata.Audience_Forum,       # Audience Forum
                metadata.Short_Summary,        # Short Summary
                slide_file_path_onedrive,      # Slide File Path (.pptx)
                slide_file_id,                 # Slide File ID (.pptx)
                full_ppt_file_path,            # Full PPT File Path
                full_ppt_file_id,              # Full PPT File ID
                thumbnail_file_path_onedrive,  # Thumbnail File Path (.png)
                thumbnail_file_id    ,          # Thumbnail File ID (.png)
                upload_date                     # upload date
            ])

            # Clean up temporary files for this slide
            os.remove(slide_file_path)
            os.remove(slide_image_path)
            print('Slides cleared from temp')
        # # Clean up temporary folders
        # os.rmdir(temp_output_folder_slides)
        # os.rmdir(temp_output_folder_images)

        # Clean up temporary folders (forcefully deletes all contents inside)
        shutil.rmtree(temp_output_folder_slides, ignore_errors=True)
        shutil.rmtree(temp_output_folder_images, ignore_errors=True)
        print('Temp folders cleared')
        gr.Info('Vectorising the meta data  and uploading in Onedrive..')
        return update_and_upload_metadata_simplified(
            metadata_list,
            metadata_folder_id,
            metadata_with_fulltext_folder_id,
            headers
        )
    except Exception as e:
        return f"An error occurred: {str(e)}"
############################################################################### SEARCH PPT ######################################
import requests
from sentence_transformers import SentenceTransformer, CrossEncoder
from sklearn.metrics.pairwise import cosine_similarity
import os
import shutil
import gradio as gr
# Local cache directory for downloaded files
LOCAL_CACHE_DIR = "local_cache"
os.makedirs(LOCAL_CACHE_DIR, exist_ok=True)

# Function to download a file from OneDrive to the local cache
def download_file_from_onedrive(file_path, file_id, headers):
    local_file_path = os.path.join(LOCAL_CACHE_DIR, os.path.basename(file_path))

    if not os.path.exists(local_file_path):  # Avoid re-downloading
        download_url = f"https://graph.microsoft.com/v1.0/me/drive/items/{file_id}/content"
        response = requests.get(download_url, headers=headers)

        if response.status_code != 200:
            raise ValueError(f"Failed to download file {file_path}. Error: {response.text}")

        with open(local_file_path, "wb") as f:
            f.write(response.content)

        print(f"βœ… Downloaded: {file_path} -> {local_file_path}")

    return local_file_path

# Function to search PPTs
def search_ppts(query, num_results):
   
    global df
    gr.Info("Searching the relevant PPTs .")
    # Generate query embedding
    query_embedding = embedding_model.encode(query).tolist()
    # Filter the DataFrame to include only rows where Unique_Slide_ID ends with "slide_1"
    df1 = df[df['Unique_Slide_ID'].str.endswith("slide_1", na=False)]
    # Compute cosine similarity scores
    df1['similarity'] = df1['Short_Summary_Embedding'].apply(
        lambda x: cosine_similarity([query_embedding], [eval(x)])[0][0]
    )

    # Sort by cosine similarity score
    df1 = df1.sort_values(by='similarity', ascending=False)

    # Get top N results for reranking
    top_n = min(50, len(df1))  # Take top 50 results for reranking
    top_results = df1.head(top_n)

    # Prepare input pairs for cross-encoder reranking
    pairs = [(query, row['Short_Summary']) for _, row in top_results.iterrows()]

    # Rerank using cross-encoder
    gr.Info("Doing Semantic Reranking for most appropriate results ")
    rerank_scores = cross_encoder.predict(pairs)
    top_results = top_results.copy()  # Avoid SettingWithCopyWarning
    top_results['rerank_score'] = rerank_scores

    # Sort by rerank score
    top_results = top_results.sort_values(by='rerank_score', ascending=False)
    print(top_results)
    # Prepare results
    results = []
    gr.Info('Downloading PPT images and ppt')
    print('Downloading PPT images and ppt')
    for _, row in top_results.head(num_results).iterrows():

        # Download slide image locally
        slide_image_path = download_file_from_onedrive(
            row['Thumbnail_File_Path'], row['Thumbnail_File_ID'], headers
        )

        # Download full PPT locally
        ppt_download_link = download_file_from_onedrive(
            row['Full_PPT_File_Path'], row['Full_PPT_File_ID'], headers
        )

        title = row['Suitable_Title']
        owner = row['PPT_Owner']
        category = row['Slide_Category']
        summary = row['Short_Summary']

        results.append({
            "image": slide_image_path,
            "title": title,
            "owner": owner,
            "category": category,
            "summary": summary,
            "download_link": ppt_download_link
        })
    print("downloading complete ")
    # Update visibility of rows
    visible_rows = min(len(results), num_results)
    row_updates = []
    row_updates = []
    for i in range(20):
        if i < len(results):
            result = results[i]
            row_updates.extend([
                gr.update(visible=True),  # βœ… Make the row visible
                gr.update(value=result["image"], visible=True),
                gr.update(value=f"<b>Title:</b> {result['title']}<br><b>Owner:</b> {result['owner']}<br><b>Category:</b> {result['category']}", visible=True),
                gr.update(value=result["summary"], visible=True),
                gr.update(value=result["download_link"], visible=True),
            ])
        else:
            row_updates.extend([gr.update(visible=False)] * 5)  # row + 4 components


    return row_updates

################################################################ SEARCH SLIDES ########################
import requests
import gradio as gr
import pandas as pd
import tiktoken
import tempfile
from PyPDF2 import PdfReader
from tqdm import tqdm
from pydantic import BaseModel, Field
from phi.agent import Agent, RunResponse
from phi.model.groq import Groq
from sentence_transformers import SentenceTransformer
from sentence_transformers import CrossEncoder
#from gradio_client import Client, handle_file
import os
from pptx import Presentation
from pptx2img import PPTXConverter # For splitting slides
import uuid
import shutil
from PIL import Image
import pandas as pd
import requests
import gradio as gr
from pydantic import BaseModel, Field
from typing import List
import tiktoken
from datetime import datetime
import zipfile
from PIL import Image
import gradio as gr
import threading
import time
# Global variable to store search results
search_results = []

def search_slides(query, num_results):
    global search_results  # Use the global variable to store results
    global df
    # # Load metadata file
    # gr.Info("Downloading the master file to search..")
    # metadata_folder_id = get_folder_id("Projects Apps/PPT Maker/Metadata_file", headers)
    # download_metadata_file(metadata_folder_id, headers)  # Explicit call to download metadata
    # metadata_file = "Master_metadata.csv"
    # if not os.path.exists(metadata_file):
    #     return [gr.update(visible=False) for _ in range(20)], "Metadata file not found."

    # df = pd.read_csv(metadata_file)
    gr.Info("Searching the relevant slides.")
    # Generate query embedding
    query_embedding = embedding_model.encode(query).tolist()

    # Compute cosine similarity scores
    df['similarity'] = df['Slide_Embedding'].apply(
        lambda x: cosine_similarity([query_embedding], [eval(x)])[0][0]
    )

    # Sort by cosine similarity score
    df = df.sort_values(by='similarity', ascending=False)

    # Get top N results for reranking
    top_n = min(50, len(df))  # Take top 50 results for reranking
    top_results = df.head(top_n)

    # Prepare input pairs for cross-encoder reranking
    pairs = [(query, row['Short_Summary']) for _, row in top_results.iterrows()]

    # Rerank using cross-encoder
    gr.Info("Doing Semantic Reranking for most appropriate results")
    rerank_scores = cross_encoder.predict(pairs)
    top_results = top_results.copy()  # Avoid SettingWithCopyWarning
    top_results['rerank_score'] = rerank_scores

    # Sort by rerank score
    top_results = top_results.sort_values(by='rerank_score', ascending=False)

    # Prepare results
    results = []
    gr.Info('Downloading slide images')
    for _, row in top_results.head(num_results).iterrows():
        # Download slide image locally
        slide_image_path = download_file_from_onedrive(
            row['Thumbnail_File_Path'], row['Thumbnail_File_ID'], headers
        )
        # Download full PPT locally
        slide_download_link = download_file_from_onedrive(
            row['Slide_File_Path'], row['Slide_File_ID'], headers
        )

        title = row['Suitable_Title']
        owner = row['PPT_Owner']
        category = row['Slide_Category']
        summary = row['Short_Summary']

        results.append({
            "image": slide_image_path,
            "title": title,
            "owner": owner,
            "category": category,
            "summary": summary,
            "slide_path": slide_download_link
        })

    # Store results in the global variable
    search_results = results

    # Update visibility of rows
    visible_rows = min(len(results), num_results)
    row_updates = []
    for i in range(20):  # Loop through all 20 rows
        if i < visible_rows:  # For rows with results
            result = results[i]
            row_updates.extend([
                gr.update(visible=True),  # Row visibility
                gr.update(value=result["image"], visible=True),
                gr.update(value=f"<b>Title:</b> {result['title']}<br><b>Owner:</b> {result['owner']}<br><b>Category:</b> {result['category']}", visible=True),
                gr.update(value=result["slide_path"], visible=True),  # Slide path for identification
                gr.update(visible=True)  # Checkbox visibility
            ])
        else:  # For rows without results
            row_updates.extend([gr.update(visible=False)] * 6)  # Row + 5 components

    return row_updates




def combine_slides_as_zip(*checkbox_values):
    """
    Collects selected individual slide files and zips them.
    Returns the path to the ZIP file.
    """
    selected_files = [
        result["slide_path"] for result, selected in zip(search_results, checkbox_values) if selected
    ]

    if not selected_files:
        return "No slides selected."

    zip_filename = os.path.join(LOCAL_CACHE_DIR, "selected_slides.zip")

    with zipfile.ZipFile(zip_filename, 'w') as zipf:
        for file_path in selected_files:
            arcname = os.path.basename(file_path)  # Only filename in zip
            zipf.write(file_path, arcname=arcname)

    return zip_filename
    
# Background thread to wait for login
def background_login(flow):
    global headers
    result = app.acquire_token_by_device_flow(flow)
    access_token = result["access_token"]

    if "access_token" in result:
        access_token_state["token"] = result["access_token"]
        access_token = result["access_token"]
        headers = {
        "Authorization": f"Bearer {access_token}",
        "Content-Type": "application/json"
        }
    else:
        access_token_state["token"] = "ERROR"

def login_action():
    flow = app.initiate_device_flow(scopes=SCOPES)
    flow_state["flow"] = flow

    login_url = flow["verification_uri"]
    login_code = flow["user_code"]

    instructions = f"""
    <p style='text-align:center; color:#1E3A8A;'>Please go to the following link to authenticate:</p>
    <p style='text-align:center;'><a href='{login_url}' target='_blank'>{login_url}</a></p>
    <p style='text-align:center;'>Enter the code: <strong>{login_code}</strong></p>
    """

    # Start background login thread
    threading.Thread(target=background_login, args=(flow,), daemon=True).start()

    return gr.update(value=instructions, visible=True)

# Check token and control UI switch
def check_login_status():
    token = access_token_state["token"]
    if token == "ERROR":
        return gr.update(visible=True, value="❌ Login failed.Click Login button again to Try again"), gr.update(visible=True), gr.update(visible=False)
    elif token:
        return gr.update(value="", visible=False), gr.update(visible=False), gr.update(visible=True)
    else:
        return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)

def validate_admin_access(username, password):
    if username == ADMIN_USERNAME and password == ADMIN_PASSWORD:
        return (
            gr.update(visible=False),  # Hide admin login form
            gr.update(visible=True),   # Show admin upload UI
            gr.update(visible=False, value="")  # Clear any error
        )
    else:
        return (
            gr.update(visible=True),
            gr.update(visible=False),
            gr.update(visible=True, value="❌ Invalid credentials")
        )
def load_and_store_metadata_df():
    global temp_file_path
    # Load metadata file
    gr.Info("Downloading the master file ..We will be ready shortly")
    metadata_folder_id = get_folder_id("Projects Apps/PPT Maker/Metadata_file", headers)
    temp_file_path =download_metadata_file(metadata_folder_id, headers)  # Explicit call to download metadata
    
    # metadata_file = "Master_metadata.csv"
    # temp_file_path = os.path.join("/tmp", metadata_file_name)
    if not os.path.exists(temp_file_path):
        return [gr.update(visible=False) for _ in range(20)], "Metadata file not found."
    # if not os.path.exists(metadata_file):
    #     return [gr.update(visible=False) for _ in range(20)], "Metadata file not found."
   
#CSS for checkboxes
css="""
.gr-button {
    background-color: #1E3A8A;
    color: white;
}

/* Style for checkbox column */
.checkbox-column {
    background-color: #EFF6FF;
    border-radius: 10px;
    padding: 10px;
    margin-top: 8px;
    margin-bottom: 8px;
    box-shadow: 0 1px 4px rgba(0,0,0,0.1);
    transition: box-shadow 0.3s ease;
}
.checkbox-column:hover {
    box-shadow: 0 2px 8px rgba(0,0,0,0.2);
}

/* Style the checkbox directly */
.gr-checkbox {
    font-weight: bold;
    color: #1D4ED8;
}
"""
# # # MAIN APP # # #
with gr.Blocks(css=css) as demo:
    with gr.Column(visible=True) as login_section:
        gr.HTML("<h1 style='text-align:center; color:#1E3A8A;'>NCTC SlideFinder</h1>")
        # 🌟 Subheading
        gr.HTML("<h3 style='text-align:center; color:#0F766E;'>PPT Repo and Smart Search Powered by AI</h3>")
        gr.HTML("""
        <div style='text-align:center;'>
            <img src='/file=logo.jpg' width='200' height='200' style='margin-top:10px;' />
        </div>
        """)
        login_button = gr.Button("πŸ” Login")
        auth_instructions = gr.HTML(visible=False)
        login_error = gr.Textbox(visible=False, interactive=False, label="", show_label=False)
        status_checker = gr.Button("βœ… Check Login Status")

    with gr.Column(visible=False) as main_app_section:
        gr.Markdown("<h2 style='text-align:center; color:#0F766E;'>Welcome to NCTC PPT Repository</h2>")
        with gr.Tab("πŸ“Š Stats Dashboard"):
            with gr.Column() as dashboard_section:
                gr.Markdown("### πŸ“Š Dashboard Overview")
                with gr.Row():
                    total_ppt_box = gr.HTML()
                    total_slides_box = gr.HTML()
                with gr.Row():
                    chart_output = gr.BarPlot(x="Month", y="PPT Uploads", label="Monthly PPT Uploads")
                    latest_ppts_output = gr.HTML()

        with gr.Tab("Upload PPT"):
            # file_input = gr.File(label="Upload PPT File")
            # output_text = gr.Textbox(label="Processing Status")
            # submit_button = gr.Button("Process")
            # submit_button.click(process_presentation, inputs=file_input, outputs=output_text)

            with gr.Column() as admin_access_section:
                gr.Markdown("### πŸ” Admin Access Required")
                username_input = gr.Textbox(label="Username", placeholder="Enter username")
                password_input = gr.Textbox(label="Password", type="password", placeholder="Enter password")
                admin_login_msg = gr.Textbox(visible=False, interactive=False, show_label=False)
                admin_login_button = gr.Button("πŸ”“ Proceed")

            with gr.Column(visible=False) as admin_upload_ui:
                file_input = gr.File(label="Upload PPT File")
                output_text = gr.Textbox(label="Processing Status")
                submit_button = gr.Button("Process")
                submit_button.click(process_presentation, inputs=file_input, outputs=output_text)
            admin_login_button.click(
                    validate_admin_access,
                    inputs=[username_input, password_input],
                    outputs=[admin_access_section, admin_upload_ui, admin_login_msg]
                )


        with gr.Tab("Search PPT"):
            query_input = gr.Textbox(label="Enter Search Query", placeholder="e.g., Risk Management")
            num_results_input = gr.Number(label="Number of Results", value=5, minimum=1, maximum=20)
            search_button = gr.Button("πŸ” Search")

            result_rows = []
            result_components = []
            for i in range(20):
              with gr.Row(visible=False) as row:
                with gr.Column(scale=2):  # image small
                  image_output = gr.Image(label="Slide Image")
                with gr.Column(scale=1):  # image small
                  info_output = gr.HTML(label="PPT Info")
                with gr.Column(scale=2):  # image small
                  summary_output = gr.Textbox(label="Short Summary", lines=3)
                with gr.Column(scale=1):  # image small
                  # download_button = gr.Button("Download PPT")
                  download_file = gr.File( label="πŸ“₯ Download PPT")

                  result_rows.append(row)  # βœ… Track rows
                  result_components.extend([row, image_output, info_output, summary_output, download_file])
            search_button.click(
                search_ppts,
                inputs=[query_input, num_results_input],
                outputs=result_components
            )
        with gr.Tab("Search and Combine Slides"):
            query_input = gr.Textbox(label="Enter Search Query to search slides", placeholder="e.g., Risk Management")
            num_results_input = gr.Number(label="Number of Slides you need", value=5, minimum=1, maximum=20)
            search_button = gr.Button("πŸ” Search")

            result_rows = []
            result_components = []
            checkboxes = []

            for i in range(20):
                with gr.Row(visible=False) as row:
                    with gr.Column(scale=4):  # Image small
                        image_output = gr.Image(label="Slide Image")
                    with gr.Column(scale=2):  # Info small
                        info_output = gr.HTML(label="Slide Info")
                    # with gr.Column(scale=2):  # Summary small
                    #     summary_output = gr.Textbox(label="Short Summary", lines=3)
                    with gr.Column(scale=1):  # Slide ID small
                        download_file = gr.File( label="πŸ“₯ Download Slide")
                        #slide_id_output = gr.Textbox(label="Slide ID", interactive=False)
                    with gr.Column(scale=1, elem_classes=["checkbox-column"]):  # Checkbox small
                        checkbox = gr.Checkbox(label="Select to Combine")
                        checkboxes.append(checkbox)

                    result_rows.append(row)  # Track rows
                    result_components.extend([row, image_output, info_output, download_file, checkbox])

            combine_button = gr.Button("Combine Selected Slides")
            combined_ppt_output = gr.File(label="Download Combined PPT")

            search_button.click(
                search_slides,
                inputs=[query_input, num_results_input],
                outputs=result_components
            )

            combine_button.click(
                combine_slides_as_zip,
                inputs=checkboxes,
                outputs=gr.File(label="Download ZIP")
            )


    login_button.click(login_action, inputs=[], outputs=[auth_instructions])
    status_checker.click(
        check_login_status,
        inputs=[],
        outputs=[login_error, login_section, main_app_section]
    ).then(
    fn=load_and_store_metadata_df,
    inputs=[],
    outputs=[]
    ).then(
        fn=update_dashboard,
        inputs=[],
        outputs=[dashboard_section, total_ppt_box, total_slides_box, chart_output, latest_ppts_output]
    )
demo.launch(debug=True, allowed_paths=[LOCAL_CACHE_DIR])