File size: 2,774 Bytes
4809e9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b98acaf
4809e9f
 
 
 
 
 
 
 
 
87898ec
4809e9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5593b74
4809e9f
87898ec
4809e9f
 
 
 
 
 
 
87898ec
4809e9f
87898ec
4809e9f
 
87898ec
80d4056
4809e9f
 
 
 
87898ec
4809e9f
87898ec
4809e9f
 
 
 
 
 
 
 
 
 
 
 
a80b12d
5704570
4809e9f
 
 
 
 
87898ec
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
from langchain import PromptTemplate, LLMChain
from langchain.llms import CTransformers
import os
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.chains import RetrievalQA
from langchain.embeddings import HuggingFaceBgeEmbeddings
from io import BytesIO
from langchain.document_loaders import PyPDFLoader
import gradio as gr


local_llm = "zephyr-7b-beta.Q5_K_S.gguf"

config = {
'max_new_tokens': 1024,
'repetition_penalty': 1.1,
'temperature': 0.1,
'top_k': 50,
'top_p': 0.9,
'stream': True,
'threads': int(os.cpu_count())
}

llm = CTransformers(
    model=local_llm,
    model_type="mistral",
    lib="avx2", #for CPU use
    **config
)

print("LLM Initialized...")


prompt_template = """Use the following pieces of information to answer the user's question.
If you don't know the answer, just say that you don't know, don't try to make up an answer.

Context: {context}
Question: {question}

Only return the helpful answer below and nothing else.
Helpful answer:
"""

model_name = "BAAI/bge-large-en"
model_kwargs = {'device': 'cpu'}
encode_kwargs = {'normalize_embeddings': False}
embeddings = HuggingFaceBgeEmbeddings(
    model_name=model_name,
    model_kwargs=model_kwargs,
    encode_kwargs=encode_kwargs
)


prompt = PromptTemplate(template=prompt_template, input_variables=['context', 'question'])
load_vector_store = Chroma(persist_directory="store/ntrs23_cosine", embedding_function=embeddings)
retriever = load_vector_store.as_retriever(search_kwargs={"k":1})


print("######################################################################")

chain_type_kwargs = {"prompt": prompt}

qa = RetrievalQA.from_chain_type(
    llm=llm,
    chain_type="stuff",
    retriever=retriever,
    return_source_documents = False,
    chain_type_kwargs= chain_type_kwargs,
    verbose=False
)


sample_prompts = ["How many shipping bills filled in 2022?"]

def get_response(input):
  query = input
  chain_type_kwargs = {"prompt": prompt}
  qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=False, chain_type_kwargs=chain_type_kwargs, verbose=False)
  response = qa(query)
  return response['result']

input = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )

iface = gr.Interface(fn=get_response, 
             inputs=input, 
             outputs="text",
             title="NTRS-NCTC Chatbot",
             description="Please Enter Your Query.",
             examples=sample_prompts,
             # allow_screenshot=False,
             allow_flagging=False
             )

iface.launch()