Spaces:
Running
Running
File size: 58,491 Bytes
0b8359d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 |
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""object_detection_evaluation module.
ObjectDetectionEvaluation is a class which manages ground truth information of a
object detection dataset, and computes frequently used detection metrics such as
Precision, Recall, CorLoc of the provided detection results.
It supports the following operations:
1) Add ground truth information of images sequentially.
2) Add detection result of images sequentially.
3) Evaluate detection metrics on already inserted detection results.
4) Write evaluation result into a pickle file for future processing or
visualization.
Note: This module operates on numpy boxes and box lists.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from abc import ABCMeta
from abc import abstractmethod
import collections
import logging
import unicodedata
import numpy as np
import six
from six.moves import range
from six.moves import zip
import tensorflow.compat.v1 as tf
from object_detection.core import standard_fields
from object_detection.utils import label_map_util
from object_detection.utils import metrics
from object_detection.utils import per_image_evaluation
class DetectionEvaluator(six.with_metaclass(ABCMeta, object)):
"""Interface for object detection evalution classes.
Example usage of the Evaluator:
------------------------------
evaluator = DetectionEvaluator(categories)
# Detections and groundtruth for image 1.
evaluator.add_single_groundtruth_image_info(...)
evaluator.add_single_detected_image_info(...)
# Detections and groundtruth for image 2.
evaluator.add_single_groundtruth_image_info(...)
evaluator.add_single_detected_image_info(...)
metrics_dict = evaluator.evaluate()
"""
def __init__(self, categories):
"""Constructor.
Args:
categories: A list of dicts, each of which has the following keys -
'id': (required) an integer id uniquely identifying this category.
'name': (required) string representing category name e.g., 'cat', 'dog'.
"""
self._categories = categories
def observe_result_dict_for_single_example(self, eval_dict):
"""Observes an evaluation result dict for a single example.
When executing eagerly, once all observations have been observed by this
method you can use `.evaluate()` to get the final metrics.
When using `tf.estimator.Estimator` for evaluation this function is used by
`get_estimator_eval_metric_ops()` to construct the metric update op.
Args:
eval_dict: A dictionary that holds tensors for evaluating an object
detection model, returned from
eval_util.result_dict_for_single_example().
Returns:
None when executing eagerly, or an update_op that can be used to update
the eval metrics in `tf.estimator.EstimatorSpec`.
"""
raise NotImplementedError('Not implemented for this evaluator!')
@abstractmethod
def add_single_ground_truth_image_info(self, image_id, groundtruth_dict):
"""Adds groundtruth for a single image to be used for evaluation.
Args:
image_id: A unique string/integer identifier for the image.
groundtruth_dict: A dictionary of groundtruth numpy arrays required for
evaluations.
"""
pass
@abstractmethod
def add_single_detected_image_info(self, image_id, detections_dict):
"""Adds detections for a single image to be used for evaluation.
Args:
image_id: A unique string/integer identifier for the image.
detections_dict: A dictionary of detection numpy arrays required for
evaluation.
"""
pass
def get_estimator_eval_metric_ops(self, eval_dict):
"""Returns dict of metrics to use with `tf.estimator.EstimatorSpec`.
Note that this must only be implemented if performing evaluation with a
`tf.estimator.Estimator`.
Args:
eval_dict: A dictionary that holds tensors for evaluating an object
detection model, returned from
eval_util.result_dict_for_single_example().
Returns:
A dictionary of metric names to tuple of value_op and update_op that can
be used as eval metric ops in `tf.estimator.EstimatorSpec`.
"""
pass
@abstractmethod
def evaluate(self):
"""Evaluates detections and returns a dictionary of metrics."""
pass
@abstractmethod
def clear(self):
"""Clears the state to prepare for a fresh evaluation."""
pass
class ObjectDetectionEvaluator(DetectionEvaluator):
"""A class to evaluate detections."""
def __init__(self,
categories,
matching_iou_threshold=0.5,
recall_lower_bound=0.0,
recall_upper_bound=1.0,
evaluate_corlocs=False,
evaluate_precision_recall=False,
metric_prefix=None,
use_weighted_mean_ap=False,
evaluate_masks=False,
group_of_weight=0.0):
"""Constructor.
Args:
categories: A list of dicts, each of which has the following keys -
'id': (required) an integer id uniquely identifying this category.
'name': (required) string representing category name e.g., 'cat', 'dog'.
matching_iou_threshold: IOU threshold to use for matching groundtruth
boxes to detection boxes.
recall_lower_bound: lower bound of recall operating area.
recall_upper_bound: upper bound of recall operating area.
evaluate_corlocs: (optional) boolean which determines if corloc scores are
to be returned or not.
evaluate_precision_recall: (optional) boolean which determines if
precision and recall values are to be returned or not.
metric_prefix: (optional) string prefix for metric name; if None, no
prefix is used.
use_weighted_mean_ap: (optional) boolean which determines if the mean
average precision is computed directly from the scores and tp_fp_labels
of all classes.
evaluate_masks: If False, evaluation will be performed based on boxes. If
True, mask evaluation will be performed instead.
group_of_weight: Weight of group-of boxes.If set to 0, detections of the
correct class within a group-of box are ignored. If weight is > 0, then
if at least one detection falls within a group-of box with
matching_iou_threshold, weight group_of_weight is added to true
positives. Consequently, if no detection falls within a group-of box,
weight group_of_weight is added to false negatives.
Raises:
ValueError: If the category ids are not 1-indexed.
"""
super(ObjectDetectionEvaluator, self).__init__(categories)
self._num_classes = max([cat['id'] for cat in categories])
if min(cat['id'] for cat in categories) < 1:
raise ValueError('Classes should be 1-indexed.')
self._matching_iou_threshold = matching_iou_threshold
self._recall_lower_bound = recall_lower_bound
self._recall_upper_bound = recall_upper_bound
self._use_weighted_mean_ap = use_weighted_mean_ap
self._label_id_offset = 1
self._evaluate_masks = evaluate_masks
self._group_of_weight = group_of_weight
self._evaluation = ObjectDetectionEvaluation(
num_groundtruth_classes=self._num_classes,
matching_iou_threshold=self._matching_iou_threshold,
recall_lower_bound=self._recall_lower_bound,
recall_upper_bound=self._recall_upper_bound,
use_weighted_mean_ap=self._use_weighted_mean_ap,
label_id_offset=self._label_id_offset,
group_of_weight=self._group_of_weight)
self._image_ids = set([])
self._evaluate_corlocs = evaluate_corlocs
self._evaluate_precision_recall = evaluate_precision_recall
self._metric_prefix = (metric_prefix + '_') if metric_prefix else ''
self._expected_keys = set([
standard_fields.InputDataFields.key,
standard_fields.InputDataFields.groundtruth_boxes,
standard_fields.InputDataFields.groundtruth_classes,
standard_fields.InputDataFields.groundtruth_difficult,
standard_fields.InputDataFields.groundtruth_instance_masks,
standard_fields.DetectionResultFields.detection_boxes,
standard_fields.DetectionResultFields.detection_scores,
standard_fields.DetectionResultFields.detection_classes,
standard_fields.DetectionResultFields.detection_masks
])
self._build_metric_names()
def get_internal_state(self):
"""Returns internal state and image ids that lead to the state.
Note that only evaluation results will be returned (e.g. not raw predictions
or groundtruth.
"""
return self._evaluation.get_internal_state(), self._image_ids
def merge_internal_state(self, image_ids, state_tuple):
"""Merges internal state with the existing state of evaluation.
If image_id is already seen by evaluator, an error will be thrown.
Args:
image_ids: list of images whose state is stored in the tuple.
state_tuple: state.
"""
for image_id in image_ids:
if image_id in self._image_ids:
raise ValueError('Image with id {} already added.'.format(image_id))
self._evaluation.merge_internal_state(state_tuple)
def _build_metric_names(self):
"""Builds a list with metric names."""
if self._recall_lower_bound > 0.0 or self._recall_upper_bound < 1.0:
self._metric_names = [
self._metric_prefix +
'Precision/mAP@{}IOU@[{:.1f},{:.1f}]Recall'.format(
self._matching_iou_threshold, self._recall_lower_bound,
self._recall_upper_bound)
]
else:
self._metric_names = [
self._metric_prefix +
'Precision/mAP@{}IOU'.format(self._matching_iou_threshold)
]
if self._evaluate_corlocs:
self._metric_names.append(
self._metric_prefix +
'Precision/meanCorLoc@{}IOU'.format(self._matching_iou_threshold))
category_index = label_map_util.create_category_index(self._categories)
for idx in range(self._num_classes):
if idx + self._label_id_offset in category_index:
category_name = category_index[idx + self._label_id_offset]['name']
try:
category_name = six.text_type(category_name, 'utf-8')
except TypeError:
pass
category_name = unicodedata.normalize('NFKD', category_name)
if six.PY2:
category_name = category_name.encode('ascii', 'ignore')
self._metric_names.append(
self._metric_prefix + 'PerformanceByCategory/AP@{}IOU/{}'.format(
self._matching_iou_threshold, category_name))
if self._evaluate_corlocs:
self._metric_names.append(
self._metric_prefix +
'PerformanceByCategory/CorLoc@{}IOU/{}'.format(
self._matching_iou_threshold, category_name))
def add_single_ground_truth_image_info(self, image_id, groundtruth_dict):
"""Adds groundtruth for a single image to be used for evaluation.
Args:
image_id: A unique string/integer identifier for the image.
groundtruth_dict: A dictionary containing -
standard_fields.InputDataFields.groundtruth_boxes: float32 numpy array
of shape [num_boxes, 4] containing `num_boxes` groundtruth boxes of
the format [ymin, xmin, ymax, xmax] in absolute image coordinates.
standard_fields.InputDataFields.groundtruth_classes: integer numpy array
of shape [num_boxes] containing 1-indexed groundtruth classes for the
boxes.
standard_fields.InputDataFields.groundtruth_difficult: Optional length M
numpy boolean array denoting whether a ground truth box is a difficult
instance or not. This field is optional to support the case that no
boxes are difficult.
standard_fields.InputDataFields.groundtruth_instance_masks: Optional
numpy array of shape [num_boxes, height, width] with values in {0, 1}.
Raises:
ValueError: On adding groundtruth for an image more than once. Will also
raise error if instance masks are not in groundtruth dictionary.
"""
if image_id in self._image_ids:
raise ValueError('Image with id {} already added.'.format(image_id))
groundtruth_classes = (
groundtruth_dict[standard_fields.InputDataFields.groundtruth_classes] -
self._label_id_offset)
# If the key is not present in the groundtruth_dict or the array is empty
# (unless there are no annotations for the groundtruth on this image)
# use values from the dictionary or insert None otherwise.
if (standard_fields.InputDataFields.groundtruth_difficult in six.viewkeys(
groundtruth_dict) and
(groundtruth_dict[standard_fields.InputDataFields.groundtruth_difficult]
.size or not groundtruth_classes.size)):
groundtruth_difficult = groundtruth_dict[
standard_fields.InputDataFields.groundtruth_difficult]
else:
groundtruth_difficult = None
if not len(self._image_ids) % 1000:
logging.warning(
'image %s does not have groundtruth difficult flag specified',
image_id)
groundtruth_masks = None
if self._evaluate_masks:
if (standard_fields.InputDataFields.groundtruth_instance_masks not in
groundtruth_dict):
raise ValueError('Instance masks not in groundtruth dictionary.')
groundtruth_masks = groundtruth_dict[
standard_fields.InputDataFields.groundtruth_instance_masks]
self._evaluation.add_single_ground_truth_image_info(
image_key=image_id,
groundtruth_boxes=groundtruth_dict[
standard_fields.InputDataFields.groundtruth_boxes],
groundtruth_class_labels=groundtruth_classes,
groundtruth_is_difficult_list=groundtruth_difficult,
groundtruth_masks=groundtruth_masks)
self._image_ids.update([image_id])
def add_single_detected_image_info(self, image_id, detections_dict):
"""Adds detections for a single image to be used for evaluation.
Args:
image_id: A unique string/integer identifier for the image.
detections_dict: A dictionary containing -
standard_fields.DetectionResultFields.detection_boxes: float32 numpy
array of shape [num_boxes, 4] containing `num_boxes` detection boxes
of the format [ymin, xmin, ymax, xmax] in absolute image coordinates.
standard_fields.DetectionResultFields.detection_scores: float32 numpy
array of shape [num_boxes] containing detection scores for the boxes.
standard_fields.DetectionResultFields.detection_classes: integer numpy
array of shape [num_boxes] containing 1-indexed detection classes for
the boxes.
standard_fields.DetectionResultFields.detection_masks: uint8 numpy array
of shape [num_boxes, height, width] containing `num_boxes` masks of
values ranging between 0 and 1.
Raises:
ValueError: If detection masks are not in detections dictionary.
"""
detection_classes = (
detections_dict[standard_fields.DetectionResultFields.detection_classes]
- self._label_id_offset)
detection_masks = None
if self._evaluate_masks:
if (standard_fields.DetectionResultFields.detection_masks not in
detections_dict):
raise ValueError('Detection masks not in detections dictionary.')
detection_masks = detections_dict[
standard_fields.DetectionResultFields.detection_masks]
self._evaluation.add_single_detected_image_info(
image_key=image_id,
detected_boxes=detections_dict[
standard_fields.DetectionResultFields.detection_boxes],
detected_scores=detections_dict[
standard_fields.DetectionResultFields.detection_scores],
detected_class_labels=detection_classes,
detected_masks=detection_masks)
def evaluate(self):
"""Compute evaluation result.
Returns:
A dictionary of metrics with the following fields -
1. summary_metrics:
'<prefix if not empty>_Precision/mAP@<matching_iou_threshold>IOU': mean
average precision at the specified IOU threshold.
2. per_category_ap: category specific results with keys of the form
'<prefix if not empty>_PerformanceByCategory/
mAP@<matching_iou_threshold>IOU/category'.
"""
(per_class_ap, mean_ap, per_class_precision, per_class_recall,
per_class_corloc, mean_corloc) = (
self._evaluation.evaluate())
pascal_metrics = {self._metric_names[0]: mean_ap}
if self._evaluate_corlocs:
pascal_metrics[self._metric_names[1]] = mean_corloc
category_index = label_map_util.create_category_index(self._categories)
for idx in range(per_class_ap.size):
if idx + self._label_id_offset in category_index:
category_name = category_index[idx + self._label_id_offset]['name']
try:
category_name = six.text_type(category_name, 'utf-8')
except TypeError:
pass
category_name = unicodedata.normalize('NFKD', category_name)
if six.PY2:
category_name = category_name.encode('ascii', 'ignore')
display_name = (
self._metric_prefix + 'PerformanceByCategory/AP@{}IOU/{}'.format(
self._matching_iou_threshold, category_name))
pascal_metrics[display_name] = per_class_ap[idx]
# Optionally add precision and recall values
if self._evaluate_precision_recall:
display_name = (
self._metric_prefix +
'PerformanceByCategory/Precision@{}IOU/{}'.format(
self._matching_iou_threshold, category_name))
pascal_metrics[display_name] = per_class_precision[idx]
display_name = (
self._metric_prefix +
'PerformanceByCategory/Recall@{}IOU/{}'.format(
self._matching_iou_threshold, category_name))
pascal_metrics[display_name] = per_class_recall[idx]
# Optionally add CorLoc metrics.classes
if self._evaluate_corlocs:
display_name = (
self._metric_prefix +
'PerformanceByCategory/CorLoc@{}IOU/{}'.format(
self._matching_iou_threshold, category_name))
pascal_metrics[display_name] = per_class_corloc[idx]
return pascal_metrics
def clear(self):
"""Clears the state to prepare for a fresh evaluation."""
self._evaluation = ObjectDetectionEvaluation(
num_groundtruth_classes=self._num_classes,
matching_iou_threshold=self._matching_iou_threshold,
use_weighted_mean_ap=self._use_weighted_mean_ap,
label_id_offset=self._label_id_offset)
self._image_ids.clear()
def add_eval_dict(self, eval_dict):
"""Observes an evaluation result dict for a single example.
When executing eagerly, once all observations have been observed by this
method you can use `.evaluate()` to get the final metrics.
When using `tf.estimator.Estimator` for evaluation this function is used by
`get_estimator_eval_metric_ops()` to construct the metric update op.
Args:
eval_dict: A dictionary that holds tensors for evaluating an object
detection model, returned from
eval_util.result_dict_for_single_example().
Returns:
None when executing eagerly, or an update_op that can be used to update
the eval metrics in `tf.estimator.EstimatorSpec`.
"""
# remove unexpected fields
eval_dict_filtered = dict()
for key, value in eval_dict.items():
if key in self._expected_keys:
eval_dict_filtered[key] = value
eval_dict_keys = list(eval_dict_filtered.keys())
def update_op(image_id, *eval_dict_batched_as_list):
"""Update operation that adds batch of images to ObjectDetectionEvaluator.
Args:
image_id: image id (single id or an array)
*eval_dict_batched_as_list: the values of the dictionary of tensors.
"""
if np.isscalar(image_id):
single_example_dict = dict(
zip(eval_dict_keys, eval_dict_batched_as_list))
self.add_single_ground_truth_image_info(image_id, single_example_dict)
self.add_single_detected_image_info(image_id, single_example_dict)
else:
for unzipped_tuple in zip(*eval_dict_batched_as_list):
single_example_dict = dict(zip(eval_dict_keys, unzipped_tuple))
image_id = single_example_dict[standard_fields.InputDataFields.key]
self.add_single_ground_truth_image_info(image_id, single_example_dict)
self.add_single_detected_image_info(image_id, single_example_dict)
args = [eval_dict_filtered[standard_fields.InputDataFields.key]]
args.extend(six.itervalues(eval_dict_filtered))
return tf.py_func(update_op, args, [])
def get_estimator_eval_metric_ops(self, eval_dict):
"""Returns dict of metrics to use with `tf.estimator.EstimatorSpec`.
Note that this must only be implemented if performing evaluation with a
`tf.estimator.Estimator`.
Args:
eval_dict: A dictionary that holds tensors for evaluating an object
detection model, returned from
eval_util.result_dict_for_single_example(). It must contain
standard_fields.InputDataFields.key.
Returns:
A dictionary of metric names to tuple of value_op and update_op that can
be used as eval metric ops in `tf.estimator.EstimatorSpec`.
"""
update_op = self.add_eval_dict(eval_dict)
def first_value_func():
self._metrics = self.evaluate()
self.clear()
return np.float32(self._metrics[self._metric_names[0]])
def value_func_factory(metric_name):
def value_func():
return np.float32(self._metrics[metric_name])
return value_func
# Ensure that the metrics are only evaluated once.
first_value_op = tf.py_func(first_value_func, [], tf.float32)
eval_metric_ops = {self._metric_names[0]: (first_value_op, update_op)}
with tf.control_dependencies([first_value_op]):
for metric_name in self._metric_names[1:]:
eval_metric_ops[metric_name] = (tf.py_func(
value_func_factory(metric_name), [], np.float32), update_op)
return eval_metric_ops
class PascalDetectionEvaluator(ObjectDetectionEvaluator):
"""A class to evaluate detections using PASCAL metrics."""
def __init__(self, categories, matching_iou_threshold=0.5):
super(PascalDetectionEvaluator, self).__init__(
categories,
matching_iou_threshold=matching_iou_threshold,
evaluate_corlocs=False,
metric_prefix='PascalBoxes',
use_weighted_mean_ap=False)
class WeightedPascalDetectionEvaluator(ObjectDetectionEvaluator):
"""A class to evaluate detections using weighted PASCAL metrics.
Weighted PASCAL metrics computes the mean average precision as the average
precision given the scores and tp_fp_labels of all classes. In comparison,
PASCAL metrics computes the mean average precision as the mean of the
per-class average precisions.
This definition is very similar to the mean of the per-class average
precisions weighted by class frequency. However, they are typically not the
same as the average precision is not a linear function of the scores and
tp_fp_labels.
"""
def __init__(self, categories, matching_iou_threshold=0.5):
super(WeightedPascalDetectionEvaluator, self).__init__(
categories,
matching_iou_threshold=matching_iou_threshold,
evaluate_corlocs=False,
metric_prefix='WeightedPascalBoxes',
use_weighted_mean_ap=True)
class PrecisionAtRecallDetectionEvaluator(ObjectDetectionEvaluator):
"""A class to evaluate detections using precision@recall metrics."""
def __init__(self,
categories,
matching_iou_threshold=0.5,
recall_lower_bound=0.0,
recall_upper_bound=1.0):
super(PrecisionAtRecallDetectionEvaluator, self).__init__(
categories,
matching_iou_threshold=matching_iou_threshold,
recall_lower_bound=recall_lower_bound,
recall_upper_bound=recall_upper_bound,
evaluate_corlocs=False,
metric_prefix='PrecisionAtRecallBoxes',
use_weighted_mean_ap=False)
class PascalInstanceSegmentationEvaluator(ObjectDetectionEvaluator):
"""A class to evaluate instance masks using PASCAL metrics."""
def __init__(self, categories, matching_iou_threshold=0.5):
super(PascalInstanceSegmentationEvaluator, self).__init__(
categories,
matching_iou_threshold=matching_iou_threshold,
evaluate_corlocs=False,
metric_prefix='PascalMasks',
use_weighted_mean_ap=False,
evaluate_masks=True)
class WeightedPascalInstanceSegmentationEvaluator(ObjectDetectionEvaluator):
"""A class to evaluate instance masks using weighted PASCAL metrics.
Weighted PASCAL metrics computes the mean average precision as the average
precision given the scores and tp_fp_labels of all classes. In comparison,
PASCAL metrics computes the mean average precision as the mean of the
per-class average precisions.
This definition is very similar to the mean of the per-class average
precisions weighted by class frequency. However, they are typically not the
same as the average precision is not a linear function of the scores and
tp_fp_labels.
"""
def __init__(self, categories, matching_iou_threshold=0.5):
super(WeightedPascalInstanceSegmentationEvaluator, self).__init__(
categories,
matching_iou_threshold=matching_iou_threshold,
evaluate_corlocs=False,
metric_prefix='WeightedPascalMasks',
use_weighted_mean_ap=True,
evaluate_masks=True)
class OpenImagesDetectionEvaluator(ObjectDetectionEvaluator):
"""A class to evaluate detections using Open Images V2 metrics.
Open Images V2 introduce group_of type of bounding boxes and this metric
handles those boxes appropriately.
"""
def __init__(self,
categories,
matching_iou_threshold=0.5,
evaluate_masks=False,
evaluate_corlocs=False,
metric_prefix='OpenImagesV2',
group_of_weight=0.0):
"""Constructor.
Args:
categories: A list of dicts, each of which has the following keys -
'id': (required) an integer id uniquely identifying this category.
'name': (required) string representing category name e.g., 'cat', 'dog'.
matching_iou_threshold: IOU threshold to use for matching groundtruth
boxes to detection boxes.
evaluate_masks: if True, evaluator evaluates masks.
evaluate_corlocs: if True, additionally evaluates and returns CorLoc.
metric_prefix: Prefix name of the metric.
group_of_weight: Weight of the group-of bounding box. If set to 0 (default
for Open Images V2 detection protocol), detections of the correct class
within a group-of box are ignored. If weight is > 0, then if at least
one detection falls within a group-of box with matching_iou_threshold,
weight group_of_weight is added to true positives. Consequently, if no
detection falls within a group-of box, weight group_of_weight is added
to false negatives.
"""
super(OpenImagesDetectionEvaluator, self).__init__(
categories,
matching_iou_threshold,
evaluate_corlocs,
metric_prefix=metric_prefix,
group_of_weight=group_of_weight,
evaluate_masks=evaluate_masks)
self._expected_keys = set([
standard_fields.InputDataFields.key,
standard_fields.InputDataFields.groundtruth_boxes,
standard_fields.InputDataFields.groundtruth_classes,
standard_fields.InputDataFields.groundtruth_group_of,
standard_fields.DetectionResultFields.detection_boxes,
standard_fields.DetectionResultFields.detection_scores,
standard_fields.DetectionResultFields.detection_classes,
])
if evaluate_masks:
self._expected_keys.add(
standard_fields.InputDataFields.groundtruth_instance_masks)
self._expected_keys.add(
standard_fields.DetectionResultFields.detection_masks)
def add_single_ground_truth_image_info(self, image_id, groundtruth_dict):
"""Adds groundtruth for a single image to be used for evaluation.
Args:
image_id: A unique string/integer identifier for the image.
groundtruth_dict: A dictionary containing -
standard_fields.InputDataFields.groundtruth_boxes: float32 numpy array
of shape [num_boxes, 4] containing `num_boxes` groundtruth boxes of
the format [ymin, xmin, ymax, xmax] in absolute image coordinates.
standard_fields.InputDataFields.groundtruth_classes: integer numpy array
of shape [num_boxes] containing 1-indexed groundtruth classes for the
boxes.
standard_fields.InputDataFields.groundtruth_group_of: Optional length M
numpy boolean array denoting whether a groundtruth box contains a
group of instances.
Raises:
ValueError: On adding groundtruth for an image more than once.
"""
if image_id in self._image_ids:
raise ValueError('Image with id {} already added.'.format(image_id))
groundtruth_classes = (
groundtruth_dict[standard_fields.InputDataFields.groundtruth_classes] -
self._label_id_offset)
# If the key is not present in the groundtruth_dict or the array is empty
# (unless there are no annotations for the groundtruth on this image)
# use values from the dictionary or insert None otherwise.
if (standard_fields.InputDataFields.groundtruth_group_of in six.viewkeys(
groundtruth_dict) and
(groundtruth_dict[standard_fields.InputDataFields.groundtruth_group_of]
.size or not groundtruth_classes.size)):
groundtruth_group_of = groundtruth_dict[
standard_fields.InputDataFields.groundtruth_group_of]
else:
groundtruth_group_of = None
if not len(self._image_ids) % 1000:
logging.warning(
'image %s does not have groundtruth group_of flag specified',
image_id)
if self._evaluate_masks:
groundtruth_masks = groundtruth_dict[
standard_fields.InputDataFields.groundtruth_instance_masks]
else:
groundtruth_masks = None
self._evaluation.add_single_ground_truth_image_info(
image_id,
groundtruth_dict[standard_fields.InputDataFields.groundtruth_boxes],
groundtruth_classes,
groundtruth_is_difficult_list=None,
groundtruth_is_group_of_list=groundtruth_group_of,
groundtruth_masks=groundtruth_masks)
self._image_ids.update([image_id])
class OpenImagesChallengeEvaluator(OpenImagesDetectionEvaluator):
"""A class implements Open Images Challenge metrics.
Both Detection and Instance Segmentation evaluation metrics are implemented.
Open Images Challenge Detection metric has two major changes in comparison
with Open Images V2 detection metric:
- a custom weight might be specified for detecting an object contained in
a group-of box.
- verified image-level labels should be explicitelly provided for
evaluation: in case in image has neither positive nor negative image level
label of class c, all detections of this class on this image will be
ignored.
Open Images Challenge Instance Segmentation metric allows to measure per
formance of models in case of incomplete annotations: some instances are
annotations only on box level and some - on image-level. In addition,
image-level labels are taken into account as in detection metric.
Open Images Challenge Detection metric default parameters:
evaluate_masks = False
group_of_weight = 1.0
Open Images Challenge Instance Segmentation metric default parameters:
evaluate_masks = True
(group_of_weight will not matter)
"""
def __init__(self,
categories,
evaluate_masks=False,
matching_iou_threshold=0.5,
evaluate_corlocs=False,
group_of_weight=1.0):
"""Constructor.
Args:
categories: A list of dicts, each of which has the following keys -
'id': (required) an integer id uniquely identifying this category.
'name': (required) string representing category name e.g., 'cat', 'dog'.
evaluate_masks: set to true for instance segmentation metric and to false
for detection metric.
matching_iou_threshold: IOU threshold to use for matching groundtruth
boxes to detection boxes.
evaluate_corlocs: if True, additionally evaluates and returns CorLoc.
group_of_weight: Weight of group-of boxes. If set to 0, detections of the
correct class within a group-of box are ignored. If weight is > 0, then
if at least one detection falls within a group-of box with
matching_iou_threshold, weight group_of_weight is added to true
positives. Consequently, if no detection falls within a group-of box,
weight group_of_weight is added to false negatives.
"""
if not evaluate_masks:
metrics_prefix = 'OpenImagesDetectionChallenge'
else:
metrics_prefix = 'OpenImagesInstanceSegmentationChallenge'
super(OpenImagesChallengeEvaluator, self).__init__(
categories,
matching_iou_threshold,
evaluate_masks=evaluate_masks,
evaluate_corlocs=evaluate_corlocs,
group_of_weight=group_of_weight,
metric_prefix=metrics_prefix)
self._evaluatable_labels = {}
# Only one of the two has to be provided, but both options are given
# for compatibility with previous codebase.
self._expected_keys.update([
standard_fields.InputDataFields.groundtruth_image_classes,
standard_fields.InputDataFields.groundtruth_labeled_classes])
def add_single_ground_truth_image_info(self, image_id, groundtruth_dict):
"""Adds groundtruth for a single image to be used for evaluation.
Args:
image_id: A unique string/integer identifier for the image.
groundtruth_dict: A dictionary containing -
standard_fields.InputDataFields.groundtruth_boxes: float32 numpy array
of shape [num_boxes, 4] containing `num_boxes` groundtruth boxes of
the format [ymin, xmin, ymax, xmax] in absolute image coordinates.
standard_fields.InputDataFields.groundtruth_classes: integer numpy array
of shape [num_boxes] containing 1-indexed groundtruth classes for the
boxes.
standard_fields.InputDataFields.groundtruth_image_classes: integer 1D
numpy array containing all classes for which labels are verified.
standard_fields.InputDataFields.groundtruth_group_of: Optional length M
numpy boolean array denoting whether a groundtruth box contains a
group of instances.
Raises:
ValueError: On adding groundtruth for an image more than once.
"""
super(OpenImagesChallengeEvaluator,
self).add_single_ground_truth_image_info(image_id, groundtruth_dict)
input_fields = standard_fields.InputDataFields
groundtruth_classes = (
groundtruth_dict[input_fields.groundtruth_classes] -
self._label_id_offset)
image_classes = np.array([], dtype=int)
if input_fields.groundtruth_image_classes in groundtruth_dict:
image_classes = groundtruth_dict[input_fields.groundtruth_image_classes]
elif input_fields.groundtruth_labeled_classes in groundtruth_dict:
image_classes = groundtruth_dict[input_fields.groundtruth_labeled_classes]
image_classes -= self._label_id_offset
self._evaluatable_labels[image_id] = np.unique(
np.concatenate((image_classes, groundtruth_classes)))
def add_single_detected_image_info(self, image_id, detections_dict):
"""Adds detections for a single image to be used for evaluation.
Args:
image_id: A unique string/integer identifier for the image.
detections_dict: A dictionary containing -
standard_fields.DetectionResultFields.detection_boxes: float32 numpy
array of shape [num_boxes, 4] containing `num_boxes` detection boxes
of the format [ymin, xmin, ymax, xmax] in absolute image coordinates.
standard_fields.DetectionResultFields.detection_scores: float32 numpy
array of shape [num_boxes] containing detection scores for the boxes.
standard_fields.DetectionResultFields.detection_classes: integer numpy
array of shape [num_boxes] containing 1-indexed detection classes for
the boxes.
Raises:
ValueError: If detection masks are not in detections dictionary.
"""
if image_id not in self._image_ids:
# Since for the correct work of evaluator it is assumed that groundtruth
# is inserted first we make sure to break the code if is it not the case.
self._image_ids.update([image_id])
self._evaluatable_labels[image_id] = np.array([])
detection_classes = (
detections_dict[standard_fields.DetectionResultFields.detection_classes]
- self._label_id_offset)
allowed_classes = np.where(
np.isin(detection_classes, self._evaluatable_labels[image_id]))
detection_classes = detection_classes[allowed_classes]
detected_boxes = detections_dict[
standard_fields.DetectionResultFields.detection_boxes][allowed_classes]
detected_scores = detections_dict[
standard_fields.DetectionResultFields.detection_scores][allowed_classes]
if self._evaluate_masks:
detection_masks = detections_dict[standard_fields.DetectionResultFields
.detection_masks][allowed_classes]
else:
detection_masks = None
self._evaluation.add_single_detected_image_info(
image_key=image_id,
detected_boxes=detected_boxes,
detected_scores=detected_scores,
detected_class_labels=detection_classes,
detected_masks=detection_masks)
def clear(self):
"""Clears stored data."""
super(OpenImagesChallengeEvaluator, self).clear()
self._evaluatable_labels.clear()
ObjectDetectionEvalMetrics = collections.namedtuple(
'ObjectDetectionEvalMetrics', [
'average_precisions', 'mean_ap', 'precisions', 'recalls', 'corlocs',
'mean_corloc'
])
class OpenImagesDetectionChallengeEvaluator(OpenImagesChallengeEvaluator):
"""A class implements Open Images Detection Challenge metric."""
def __init__(self,
categories,
matching_iou_threshold=0.5,
evaluate_corlocs=False):
"""Constructor.
Args:
categories: A list of dicts, each of which has the following keys -
'id': (required) an integer id uniquely identifying this category.
'name': (required) string representing category name e.g., 'cat', 'dog'.
matching_iou_threshold: IOU threshold to use for matching groundtruth
boxes to detection boxes.
evaluate_corlocs: if True, additionally evaluates and returns CorLoc.
"""
super(OpenImagesDetectionChallengeEvaluator, self).__init__(
categories=categories,
evaluate_masks=False,
matching_iou_threshold=matching_iou_threshold,
evaluate_corlocs=False,
group_of_weight=1.0)
class OpenImagesInstanceSegmentationChallengeEvaluator(
OpenImagesChallengeEvaluator):
"""A class implements Open Images Instance Segmentation Challenge metric."""
def __init__(self,
categories,
matching_iou_threshold=0.5,
evaluate_corlocs=False):
"""Constructor.
Args:
categories: A list of dicts, each of which has the following keys -
'id': (required) an integer id uniquely identifying this category.
'name': (required) string representing category name e.g., 'cat', 'dog'.
matching_iou_threshold: IOU threshold to use for matching groundtruth
boxes to detection boxes.
evaluate_corlocs: if True, additionally evaluates and returns CorLoc.
"""
super(OpenImagesInstanceSegmentationChallengeEvaluator, self).__init__(
categories=categories,
evaluate_masks=True,
matching_iou_threshold=matching_iou_threshold,
evaluate_corlocs=False,
group_of_weight=0.0)
ObjectDetectionEvaluationState = collections.namedtuple(
'ObjectDetectionEvaluationState', [
'num_gt_instances_per_class',
'scores_per_class',
'tp_fp_labels_per_class',
'num_gt_imgs_per_class',
'num_images_correctly_detected_per_class',
])
class ObjectDetectionEvaluation(object):
"""Internal implementation of Pascal object detection metrics."""
def __init__(self,
num_groundtruth_classes,
matching_iou_threshold=0.5,
nms_iou_threshold=1.0,
nms_max_output_boxes=10000,
recall_lower_bound=0.0,
recall_upper_bound=1.0,
use_weighted_mean_ap=False,
label_id_offset=0,
group_of_weight=0.0,
per_image_eval_class=per_image_evaluation.PerImageEvaluation):
"""Constructor.
Args:
num_groundtruth_classes: Number of ground-truth classes.
matching_iou_threshold: IOU threshold used for matching detected boxes to
ground-truth boxes.
nms_iou_threshold: IOU threshold used for non-maximum suppression.
nms_max_output_boxes: Maximum number of boxes returned by non-maximum
suppression.
recall_lower_bound: lower bound of recall operating area
recall_upper_bound: upper bound of recall operating area
use_weighted_mean_ap: (optional) boolean which determines if the mean
average precision is computed directly from the scores and tp_fp_labels
of all classes.
label_id_offset: The label id offset.
group_of_weight: Weight of group-of boxes.If set to 0, detections of the
correct class within a group-of box are ignored. If weight is > 0, then
if at least one detection falls within a group-of box with
matching_iou_threshold, weight group_of_weight is added to true
positives. Consequently, if no detection falls within a group-of box,
weight group_of_weight is added to false negatives.
per_image_eval_class: The class that contains functions for computing per
image metrics.
Raises:
ValueError: if num_groundtruth_classes is smaller than 1.
"""
if num_groundtruth_classes < 1:
raise ValueError('Need at least 1 groundtruth class for evaluation.')
self.per_image_eval = per_image_eval_class(
num_groundtruth_classes=num_groundtruth_classes,
matching_iou_threshold=matching_iou_threshold,
nms_iou_threshold=nms_iou_threshold,
nms_max_output_boxes=nms_max_output_boxes,
group_of_weight=group_of_weight)
self.recall_lower_bound = recall_lower_bound
self.recall_upper_bound = recall_upper_bound
self.group_of_weight = group_of_weight
self.num_class = num_groundtruth_classes
self.use_weighted_mean_ap = use_weighted_mean_ap
self.label_id_offset = label_id_offset
self.groundtruth_boxes = {}
self.groundtruth_class_labels = {}
self.groundtruth_masks = {}
self.groundtruth_is_difficult_list = {}
self.groundtruth_is_group_of_list = {}
self.num_gt_instances_per_class = np.zeros(self.num_class, dtype=float)
self.num_gt_imgs_per_class = np.zeros(self.num_class, dtype=int)
self._initialize_detections()
def _initialize_detections(self):
"""Initializes internal data structures."""
self.detection_keys = set()
self.scores_per_class = [[] for _ in range(self.num_class)]
self.tp_fp_labels_per_class = [[] for _ in range(self.num_class)]
self.num_images_correctly_detected_per_class = np.zeros(self.num_class)
self.average_precision_per_class = np.empty(self.num_class, dtype=float)
self.average_precision_per_class.fill(np.nan)
self.precisions_per_class = [np.nan] * self.num_class
self.recalls_per_class = [np.nan] * self.num_class
self.sum_tp_class = [np.nan] * self.num_class
self.corloc_per_class = np.ones(self.num_class, dtype=float)
def clear_detections(self):
self._initialize_detections()
def get_internal_state(self):
"""Returns internal state of the evaluation.
NOTE: that only evaluation results will be returned
(e.g. no raw predictions or groundtruth).
Returns:
internal state of the evaluation.
"""
return ObjectDetectionEvaluationState(
self.num_gt_instances_per_class, self.scores_per_class,
self.tp_fp_labels_per_class, self.num_gt_imgs_per_class,
self.num_images_correctly_detected_per_class)
def merge_internal_state(self, state_tuple):
"""Merges internal state of the evaluation with the current state.
Args:
state_tuple: state tuple representing evaluation state: should be of type
ObjectDetectionEvaluationState.
"""
(num_gt_instances_per_class, scores_per_class, tp_fp_labels_per_class,
num_gt_imgs_per_class, num_images_correctly_detected_per_class) = (
state_tuple)
assert self.num_class == len(num_gt_instances_per_class)
assert self.num_class == len(scores_per_class)
assert self.num_class == len(tp_fp_labels_per_class)
for i in range(self.num_class):
self.scores_per_class[i].extend(scores_per_class[i])
self.tp_fp_labels_per_class[i].extend(tp_fp_labels_per_class[i])
self.num_gt_instances_per_class[i] += num_gt_instances_per_class[i]
self.num_gt_imgs_per_class[i] += num_gt_imgs_per_class[i]
self.num_images_correctly_detected_per_class[
i] += num_images_correctly_detected_per_class[i]
def add_single_ground_truth_image_info(self,
image_key,
groundtruth_boxes,
groundtruth_class_labels,
groundtruth_is_difficult_list=None,
groundtruth_is_group_of_list=None,
groundtruth_masks=None):
"""Adds groundtruth for a single image to be used for evaluation.
Args:
image_key: A unique string/integer identifier for the image.
groundtruth_boxes: float32 numpy array of shape [num_boxes, 4] containing
`num_boxes` groundtruth boxes of the format [ymin, xmin, ymax, xmax] in
absolute image coordinates.
groundtruth_class_labels: integer numpy array of shape [num_boxes]
containing 0-indexed groundtruth classes for the boxes.
groundtruth_is_difficult_list: A length M numpy boolean array denoting
whether a ground truth box is a difficult instance or not. To support
the case that no boxes are difficult, it is by default set as None.
groundtruth_is_group_of_list: A length M numpy boolean array denoting
whether a ground truth box is a group-of box or not. To support the case
that no boxes are groups-of, it is by default set as None.
groundtruth_masks: uint8 numpy array of shape [num_boxes, height, width]
containing `num_boxes` groundtruth masks. The mask values range from 0
to 1.
"""
if image_key in self.groundtruth_boxes:
logging.warning(
'image %s has already been added to the ground truth database.',
image_key)
return
self.groundtruth_boxes[image_key] = groundtruth_boxes
self.groundtruth_class_labels[image_key] = groundtruth_class_labels
self.groundtruth_masks[image_key] = groundtruth_masks
if groundtruth_is_difficult_list is None:
num_boxes = groundtruth_boxes.shape[0]
groundtruth_is_difficult_list = np.zeros(num_boxes, dtype=bool)
self.groundtruth_is_difficult_list[
image_key] = groundtruth_is_difficult_list.astype(dtype=bool)
if groundtruth_is_group_of_list is None:
num_boxes = groundtruth_boxes.shape[0]
groundtruth_is_group_of_list = np.zeros(num_boxes, dtype=bool)
if groundtruth_masks is None:
num_boxes = groundtruth_boxes.shape[0]
mask_presence_indicator = np.zeros(num_boxes, dtype=bool)
else:
mask_presence_indicator = (np.sum(groundtruth_masks,
axis=(1, 2)) == 0).astype(dtype=bool)
self.groundtruth_is_group_of_list[
image_key] = groundtruth_is_group_of_list.astype(dtype=bool)
self._update_ground_truth_statistics(
groundtruth_class_labels,
groundtruth_is_difficult_list.astype(dtype=bool)
| mask_presence_indicator, # ignore boxes without masks
groundtruth_is_group_of_list.astype(dtype=bool))
def add_single_detected_image_info(self,
image_key,
detected_boxes,
detected_scores,
detected_class_labels,
detected_masks=None):
"""Adds detections for a single image to be used for evaluation.
Args:
image_key: A unique string/integer identifier for the image.
detected_boxes: float32 numpy array of shape [num_boxes, 4] containing
`num_boxes` detection boxes of the format [ymin, xmin, ymax, xmax] in
absolute image coordinates.
detected_scores: float32 numpy array of shape [num_boxes] containing
detection scores for the boxes.
detected_class_labels: integer numpy array of shape [num_boxes] containing
0-indexed detection classes for the boxes.
detected_masks: np.uint8 numpy array of shape [num_boxes, height, width]
containing `num_boxes` detection masks with values ranging between 0 and
1.
Raises:
ValueError: if the number of boxes, scores and class labels differ in
length.
"""
if (len(detected_boxes) != len(detected_scores) or
len(detected_boxes) != len(detected_class_labels)):
raise ValueError(
'detected_boxes, detected_scores and '
'detected_class_labels should all have same lengths. Got'
'[%d, %d, %d]' % len(detected_boxes), len(detected_scores),
len(detected_class_labels))
if image_key in self.detection_keys:
logging.warning(
'image %s has already been added to the detection result database',
image_key)
return
self.detection_keys.add(image_key)
if image_key in self.groundtruth_boxes:
groundtruth_boxes = self.groundtruth_boxes[image_key]
groundtruth_class_labels = self.groundtruth_class_labels[image_key]
# Masks are popped instead of look up. The reason is that we do not want
# to keep all masks in memory which can cause memory overflow.
groundtruth_masks = self.groundtruth_masks.pop(image_key)
groundtruth_is_difficult_list = self.groundtruth_is_difficult_list[
image_key]
groundtruth_is_group_of_list = self.groundtruth_is_group_of_list[
image_key]
else:
groundtruth_boxes = np.empty(shape=[0, 4], dtype=float)
groundtruth_class_labels = np.array([], dtype=int)
if detected_masks is None:
groundtruth_masks = None
else:
groundtruth_masks = np.empty(shape=[0, 1, 1], dtype=float)
groundtruth_is_difficult_list = np.array([], dtype=bool)
groundtruth_is_group_of_list = np.array([], dtype=bool)
scores, tp_fp_labels, is_class_correctly_detected_in_image = (
self.per_image_eval.compute_object_detection_metrics(
detected_boxes=detected_boxes,
detected_scores=detected_scores,
detected_class_labels=detected_class_labels,
groundtruth_boxes=groundtruth_boxes,
groundtruth_class_labels=groundtruth_class_labels,
groundtruth_is_difficult_list=groundtruth_is_difficult_list,
groundtruth_is_group_of_list=groundtruth_is_group_of_list,
detected_masks=detected_masks,
groundtruth_masks=groundtruth_masks))
for i in range(self.num_class):
if scores[i].shape[0] > 0:
self.scores_per_class[i].append(scores[i])
self.tp_fp_labels_per_class[i].append(tp_fp_labels[i])
(self.num_images_correctly_detected_per_class
) += is_class_correctly_detected_in_image
def _update_ground_truth_statistics(self, groundtruth_class_labels,
groundtruth_is_difficult_list,
groundtruth_is_group_of_list):
"""Update grouth truth statitistics.
1. Difficult boxes are ignored when counting the number of ground truth
instances as done in Pascal VOC devkit.
2. Difficult boxes are treated as normal boxes when computing CorLoc related
statitistics.
Args:
groundtruth_class_labels: An integer numpy array of length M, representing
M class labels of object instances in ground truth
groundtruth_is_difficult_list: A boolean numpy array of length M denoting
whether a ground truth box is a difficult instance or not
groundtruth_is_group_of_list: A boolean numpy array of length M denoting
whether a ground truth box is a group-of box or not
"""
for class_index in range(self.num_class):
num_gt_instances = np.sum(groundtruth_class_labels[
~groundtruth_is_difficult_list
& ~groundtruth_is_group_of_list] == class_index)
num_groupof_gt_instances = self.group_of_weight * np.sum(
groundtruth_class_labels[
groundtruth_is_group_of_list
& ~groundtruth_is_difficult_list] == class_index)
self.num_gt_instances_per_class[
class_index] += num_gt_instances + num_groupof_gt_instances
if np.any(groundtruth_class_labels == class_index):
self.num_gt_imgs_per_class[class_index] += 1
def evaluate(self):
"""Compute evaluation result.
Returns:
A named tuple with the following fields -
average_precision: float numpy array of average precision for
each class.
mean_ap: mean average precision of all classes, float scalar
precisions: List of precisions, each precision is a float numpy
array
recalls: List of recalls, each recall is a float numpy array
corloc: numpy float array
mean_corloc: Mean CorLoc score for each class, float scalar
"""
if (self.num_gt_instances_per_class == 0).any():
logging.warning(
'The following classes have no ground truth examples: %s',
np.squeeze(np.argwhere(self.num_gt_instances_per_class == 0)) +
self.label_id_offset)
if self.use_weighted_mean_ap:
all_scores = np.array([], dtype=float)
all_tp_fp_labels = np.array([], dtype=bool)
for class_index in range(self.num_class):
if self.num_gt_instances_per_class[class_index] == 0:
continue
if not self.scores_per_class[class_index]:
scores = np.array([], dtype=float)
tp_fp_labels = np.array([], dtype=float)
else:
scores = np.concatenate(self.scores_per_class[class_index])
tp_fp_labels = np.concatenate(self.tp_fp_labels_per_class[class_index])
if self.use_weighted_mean_ap:
all_scores = np.append(all_scores, scores)
all_tp_fp_labels = np.append(all_tp_fp_labels, tp_fp_labels)
precision, recall = metrics.compute_precision_recall(
scores, tp_fp_labels, self.num_gt_instances_per_class[class_index])
recall_within_bound_indices = [
index for index, value in enumerate(recall) if
value >= self.recall_lower_bound and value <= self.recall_upper_bound
]
recall_within_bound = recall[recall_within_bound_indices]
precision_within_bound = precision[recall_within_bound_indices]
self.precisions_per_class[class_index] = precision_within_bound
self.recalls_per_class[class_index] = recall_within_bound
self.sum_tp_class[class_index] = tp_fp_labels.sum()
average_precision = metrics.compute_average_precision(
precision_within_bound, recall_within_bound)
self.average_precision_per_class[class_index] = average_precision
logging.info('average_precision: %f', average_precision)
self.corloc_per_class = metrics.compute_cor_loc(
self.num_gt_imgs_per_class,
self.num_images_correctly_detected_per_class)
if self.use_weighted_mean_ap:
num_gt_instances = np.sum(self.num_gt_instances_per_class)
precision, recall = metrics.compute_precision_recall(
all_scores, all_tp_fp_labels, num_gt_instances)
recall_within_bound_indices = [
index for index, value in enumerate(recall) if
value >= self.recall_lower_bound and value <= self.recall_upper_bound
]
recall_within_bound = recall[recall_within_bound_indices]
precision_within_bound = precision[recall_within_bound_indices]
mean_ap = metrics.compute_average_precision(precision_within_bound,
recall_within_bound)
else:
mean_ap = np.nanmean(self.average_precision_per_class)
mean_corloc = np.nanmean(self.corloc_per_class)
return ObjectDetectionEvalMetrics(self.average_precision_per_class, mean_ap,
self.precisions_per_class,
self.recalls_per_class,
self.corloc_per_class, mean_corloc)
|