Spaces:
Running
Running
File size: 2,187 Bytes
0b8359d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Test utility functions for manipulating Keras models."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import unittest
import tensorflow.compat.v1 as tf
from object_detection.utils import model_util
from object_detection.utils import tf_version
@unittest.skipIf(tf_version.is_tf1(), 'Skipping TF2.X only test.')
class ExtractSubmodelUtilTest(tf.test.TestCase):
def test_simple_model(self):
inputs = tf.keras.Input(shape=(256,)) # Returns a placeholder tensor
# A layer instance is callable on a tensor, and returns a tensor.
x = tf.keras.layers.Dense(128, activation='relu', name='a')(inputs)
x = tf.keras.layers.Dense(64, activation='relu', name='b')(x)
x = tf.keras.layers.Dense(32, activation='relu', name='c')(x)
x = tf.keras.layers.Dense(16, activation='relu', name='d')(x)
x = tf.keras.layers.Dense(8, activation='relu', name='e')(x)
predictions = tf.keras.layers.Dense(10, activation='softmax')(x)
model = tf.keras.Model(inputs=inputs, outputs=predictions)
new_in = model.get_layer(
name='b').input
new_out = model.get_layer(
name='d').output
new_model = model_util.extract_submodel(
model=model,
inputs=new_in,
outputs=new_out)
batch_size = 3
ones = tf.ones((batch_size, 128))
final_out = new_model(ones)
self.assertAllEqual(final_out.shape, (batch_size, 16))
if __name__ == '__main__':
tf.test.main()
|