File size: 9,156 Bytes
0b8359d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Python library for faster_rcnn model, tailored for TPU inference."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

# pylint: disable=protected-access
import tensorflow.compat.v1 as tf

# pylint: disable=g-import-not-at-top
# Checking TF version, because this module relies on TPUPartitionedCall
# in tensorflow.python.tpu, which is not available until TF r1.14.
major, minor, _ = tf.__version__.split('.')  # pylint: disable=protected-access
if int(major) < 1 or (int(major == 1) and int(minor) < 14):
  raise RuntimeError(
      'TensorFlow version >= 1.14 is required. Found ({}).'.format(
          tf.__version__))

from tensorflow.python.framework import function
from tensorflow.python.tpu import functional as tpu_functional
from tensorflow.python.tpu import tpu
from tensorflow.python.tpu.bfloat16 import bfloat16_scope
from tensorflow.python.tpu.ops import tpu_ops
from object_detection import exporter
from object_detection.builders import model_builder
from object_detection.tpu_exporters import utils

ANCHORS = 'anchors'
BOX_CLASSIFIER_FEATURES = 'box_classifier_features'
BOX_ENCODINGS = 'box_encodings'
CLASS_PREDICTIONS_WITH_BACKGROUND = 'class_predictions_with_background'
IMAGE_SHAPE = 'image_shape'
NUM_PROPOSALS = 'num_proposals'
PROPOSAL_BOXES = 'proposal_boxes'
PROPOSAL_BOXES_NORMALIZED = 'proposal_boxes_normalized'
REFINED_BOX_ENCODINGS = 'refined_box_encodings'
RPN_BOX_ENCODINGS = 'rpn_box_encodings'
RPN_BOX_PREDICTOR_FEATURES = 'rpn_box_predictor_features'
RPN_FEATURES_TO_CROP = 'rpn_features_to_crop'
RPN_OBJECTNESS_PREDICTIONS_WITH_BACKGROUND = \
    'rpn_objectness_predictions_with_background'

INPUT_BUILDER_UTIL_MAP = {
    'model_build': model_builder.build,
}


def modify_config(pipeline_config):
  """Modifies pipeline config to build the correct graph for TPU."""
  # faster_rcnn.use_static_shapes and faster_rcnn.use_static_shapes_for_eval
  # are set to True in order for detection_model.use_static_shapes to be True.
  # We need to set this so that clip_to_window in _predict_first_stage
  # can work on TPU. However as a side-effect, the flag forces the use of
  # padded version of NMS.
  pipeline_config.model.faster_rcnn.use_static_shapes = True
  pipeline_config.model.faster_rcnn.use_static_shapes_for_eval = True
  pipeline_config.model.faster_rcnn.use_matmul_crop_and_resize = True
  pipeline_config.model.faster_rcnn.clip_anchors_to_image = True
  return pipeline_config


def get_prediction_tensor_shapes(pipeline_config):
  """Gets static shapes of tensors by building the graph on CPU.

  This function builds the graph on CPU and obtain static shapes of output
  tensors from TPUPartitionedCall. Shapes information are later used for setting
  shapes of tensors when TPU graphs are built. This is necessary because tensors
  coming out of TPUPartitionedCall lose their shape information, which are
  needed for a lot of CPU operations later.

  Args:
    pipeline_config: A TrainEvalPipelineConfig proto.

  Returns:
    A python dict of tensors' names and their shapes.
  """
  pipeline_config = modify_config(pipeline_config)
  detection_model = INPUT_BUILDER_UTIL_MAP['model_build'](
      pipeline_config.model, is_training=False)

  _, input_tensors = exporter.input_placeholder_fn_map['image_tensor']()

  inputs = tf.cast(input_tensors, dtype=tf.float32)
  preprocessed_inputs, true_image_shapes = detection_model.preprocess(inputs)

  prediction_dict = detection_model.predict(preprocessed_inputs,
                                            true_image_shapes)

  shapes_info = {}
  for k, v in prediction_dict.items():
    if isinstance(v, list):
      shapes_info[k] = [item.shape.as_list() for item in v]
    else:
      shapes_info[k] = v.shape.as_list()
  return shapes_info


def build_graph(pipeline_config,
                shapes_info,
                input_type='encoded_image_string_tensor',
                use_bfloat16=True):
  """Builds serving graph of faster_rcnn to be exported.

  Args:
    pipeline_config: A TrainEvalPipelineConfig proto.
    shapes_info: A python dict of tensors' names and their shapes, returned by
      `get_prediction_tensor_shapes()`.
    input_type: One of
                'encoded_image_string_tensor': a 1d tensor with dtype=tf.string
                'image_tensor': a 4d tensor with dtype=tf.uint8
                'tf_example': a 1d tensor with dtype=tf.string
    use_bfloat16: If true, use tf.bfloat16 on TPU.

  Returns:
    placeholder_tensor: A placeholder tensor, type determined by `input_type`.
    result_tensor_dict: A python dict of tensors' names and tensors.
  """
  pipeline_config = modify_config(pipeline_config)
  detection_model = INPUT_BUILDER_UTIL_MAP['model_build'](
      pipeline_config.model, is_training=False)

  placeholder_tensor, input_tensors = \
      exporter.input_placeholder_fn_map[input_type]()

  # CPU pre-processing
  inputs = tf.cast(input_tensors, dtype=tf.float32)
  preprocessed_inputs, true_image_shapes = detection_model.preprocess(inputs)

  # Dimshuffle: [b, h, w, c] -> [b, c, h, w]
  preprocessed_inputs = tf.transpose(preprocessed_inputs, perm=[0, 3, 1, 2])
  if use_bfloat16:
    preprocessed_inputs = tf.cast(preprocessed_inputs, dtype=tf.bfloat16)

  # TPU feature extraction
  def tpu_subgraph_predict_fn(preprocessed_inputs, true_image_shapes):
    """Defines the first part of graph on TPU."""
    # [b, c, h, w] -> [b, h, w, c]
    preprocessed_inputs = tf.transpose(preprocessed_inputs, perm=[0, 2, 3, 1])

    prediction_dict = detection_model.predict(preprocessed_inputs,
                                              true_image_shapes)

    return (
        # [batch, anchor, depth] -> [depth, batch, anchor]
        tf.transpose(prediction_dict[RPN_BOX_ENCODINGS], perm=[2, 0, 1]),
        # [batch, anchor, depth] -> [depth, batch, anchor]
        tf.transpose(
            prediction_dict[RPN_OBJECTNESS_PREDICTIONS_WITH_BACKGROUND],
            perm=[2, 0, 1]),
        # [anchors, depth]
        tf.transpose(prediction_dict[ANCHORS], perm=[1, 0]),
        # [num_proposals, num_classes, code_size]
        prediction_dict[REFINED_BOX_ENCODINGS],
        prediction_dict[CLASS_PREDICTIONS_WITH_BACKGROUND],
        prediction_dict[NUM_PROPOSALS],
        prediction_dict[PROPOSAL_BOXES])

  @function.Defun(capture_resource_var_by_value=False)
  def tpu_subgraph_predict():
    if use_bfloat16:
      with bfloat16_scope():
        return tpu.rewrite(tpu_subgraph_predict_fn,
                           [preprocessed_inputs, true_image_shapes])
    else:
      return tpu.rewrite(tpu_subgraph_predict_fn,
                         [preprocessed_inputs, true_image_shapes])

  (rpn_box_encodings, rpn_objectness_predictions_with_background, anchors,
   refined_box_encodings, class_predictions_with_background, num_proposals,
   proposal_boxes) = tpu_functional.TPUPartitionedCall(
       args=tpu_subgraph_predict.captured_inputs,
       device_ordinal=tpu_ops.tpu_ordinal_selector(),
       Tout=[
           o.type for o in tpu_subgraph_predict.definition.signature.output_arg
       ],
       f=tpu_subgraph_predict)

  prediction_dict = {
      RPN_BOX_ENCODINGS:
          tf.transpose(rpn_box_encodings, perm=[1, 2, 0]),
      RPN_OBJECTNESS_PREDICTIONS_WITH_BACKGROUND:
          tf.transpose(
              rpn_objectness_predictions_with_background, perm=[1, 2, 0]),
      ANCHORS:
          tf.transpose(anchors, perm=[1, 0]),
      REFINED_BOX_ENCODINGS:
          refined_box_encodings,
      CLASS_PREDICTIONS_WITH_BACKGROUND:
          class_predictions_with_background,
      NUM_PROPOSALS:
          num_proposals,
      PROPOSAL_BOXES:
          proposal_boxes
  }

  for k in prediction_dict:
    if isinstance(prediction_dict[k], list):
      prediction_dict[k] = [
          prediction_dict[k][idx].set_shape(shapes_info[k][idx])
          for idx in len(prediction_dict[k])]
    else:
      prediction_dict[k].set_shape(shapes_info[k])

  if use_bfloat16:
    prediction_dict = utils.bfloat16_to_float32_nested(prediction_dict)

  # CPU post-processing (NMS)
  postprocessed_tensors = detection_model.postprocess(prediction_dict,
                                                      true_image_shapes)
  result_tensor_dict = exporter.add_output_tensor_nodes(postprocessed_tensors,
                                                        'inference_op')

  return placeholder_tensor, result_tensor_dict