Spaces:
Running
Running
File size: 12,829 Bytes
0b8359d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 |
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Class Head.
Contains Class prediction head classes for different meta architectures.
All the class prediction heads have a predict function that receives the
`features` as the first argument and returns class predictions with background.
"""
import functools
import tensorflow.compat.v1 as tf
import tf_slim as slim
from object_detection.predictors.heads import head
class MaskRCNNClassHead(head.Head):
"""Mask RCNN class prediction head.
Please refer to Mask RCNN paper:
https://arxiv.org/abs/1703.06870
"""
def __init__(self,
is_training,
num_class_slots,
fc_hyperparams_fn,
use_dropout,
dropout_keep_prob,
scope='ClassPredictor'):
"""Constructor.
Args:
is_training: Indicates whether the BoxPredictor is in training mode.
num_class_slots: number of class slots. Note that num_class_slots may or
may not include an implicit background category.
fc_hyperparams_fn: A function to generate tf-slim arg_scope with
hyperparameters for fully connected ops.
use_dropout: Option to use dropout or not. Note that a single dropout
op is applied here prior to both box and class predictions, which stands
in contrast to the ConvolutionalBoxPredictor below.
dropout_keep_prob: Keep probability for dropout.
This is only used if use_dropout is True.
scope: Scope name for the convolution operation.
"""
super(MaskRCNNClassHead, self).__init__()
self._is_training = is_training
self._num_class_slots = num_class_slots
self._fc_hyperparams_fn = fc_hyperparams_fn
self._use_dropout = use_dropout
self._dropout_keep_prob = dropout_keep_prob
self._scope = scope
def predict(self, features, num_predictions_per_location=1):
"""Predicts boxes and class scores.
Args:
features: A float tensor of shape [batch_size, height, width, channels]
containing features for a batch of images.
num_predictions_per_location: Int containing number of predictions per
location.
Returns:
class_predictions_with_background: A float tensor of shape
[batch_size, 1, num_class_slots] representing the class predictions for
the proposals.
Raises:
ValueError: If num_predictions_per_location is not 1.
"""
if num_predictions_per_location != 1:
raise ValueError('Only num_predictions_per_location=1 is supported')
spatial_averaged_roi_pooled_features = tf.reduce_mean(
features, [1, 2], keep_dims=True, name='AvgPool')
flattened_roi_pooled_features = slim.flatten(
spatial_averaged_roi_pooled_features)
if self._use_dropout:
flattened_roi_pooled_features = slim.dropout(
flattened_roi_pooled_features,
keep_prob=self._dropout_keep_prob,
is_training=self._is_training)
with slim.arg_scope(self._fc_hyperparams_fn()):
class_predictions_with_background = slim.fully_connected(
flattened_roi_pooled_features,
self._num_class_slots,
reuse=tf.AUTO_REUSE,
activation_fn=None,
scope=self._scope)
class_predictions_with_background = tf.reshape(
class_predictions_with_background,
[-1, 1, self._num_class_slots])
return class_predictions_with_background
class ConvolutionalClassHead(head.Head):
"""Convolutional class prediction head."""
def __init__(self,
is_training,
num_class_slots,
use_dropout,
dropout_keep_prob,
kernel_size,
apply_sigmoid_to_scores=False,
class_prediction_bias_init=0.0,
use_depthwise=False,
scope='ClassPredictor'):
"""Constructor.
Args:
is_training: Indicates whether the BoxPredictor is in training mode.
num_class_slots: number of class slots. Note that num_class_slots may or
may not include an implicit background category.
use_dropout: Option to use dropout or not. Note that a single dropout
op is applied here prior to both box and class predictions, which stands
in contrast to the ConvolutionalBoxPredictor below.
dropout_keep_prob: Keep probability for dropout.
This is only used if use_dropout is True.
kernel_size: Size of final convolution kernel. If the
spatial resolution of the feature map is smaller than the kernel size,
then the kernel size is automatically set to be
min(feature_width, feature_height).
apply_sigmoid_to_scores: if True, apply the sigmoid on the output
class_predictions.
class_prediction_bias_init: constant value to initialize bias of the last
conv2d layer before class prediction.
use_depthwise: Whether to use depthwise convolutions for prediction
steps. Default is False.
scope: Scope name for the convolution operation.
Raises:
ValueError: if min_depth > max_depth.
ValueError: if use_depthwise is True and kernel_size is 1.
"""
if use_depthwise and (kernel_size == 1):
raise ValueError('Should not use 1x1 kernel when using depthwise conv')
super(ConvolutionalClassHead, self).__init__()
self._is_training = is_training
self._num_class_slots = num_class_slots
self._use_dropout = use_dropout
self._dropout_keep_prob = dropout_keep_prob
self._kernel_size = kernel_size
self._apply_sigmoid_to_scores = apply_sigmoid_to_scores
self._class_prediction_bias_init = class_prediction_bias_init
self._use_depthwise = use_depthwise
self._scope = scope
def predict(self, features, num_predictions_per_location):
"""Predicts boxes.
Args:
features: A float tensor of shape [batch_size, height, width, channels]
containing image features.
num_predictions_per_location: Number of box predictions to be made per
spatial location.
Returns:
class_predictions_with_background: A float tensors of shape
[batch_size, num_anchors, num_class_slots] representing the class
predictions for the proposals.
"""
net = features
if self._use_dropout:
net = slim.dropout(net, keep_prob=self._dropout_keep_prob)
if self._use_depthwise:
depthwise_scope = self._scope + '_depthwise'
class_predictions_with_background = slim.separable_conv2d(
net, None, [self._kernel_size, self._kernel_size],
padding='SAME', depth_multiplier=1, stride=1,
rate=1, scope=depthwise_scope)
class_predictions_with_background = slim.conv2d(
class_predictions_with_background,
num_predictions_per_location * self._num_class_slots, [1, 1],
activation_fn=None,
normalizer_fn=None,
normalizer_params=None,
scope=self._scope)
else:
class_predictions_with_background = slim.conv2d(
net,
num_predictions_per_location * self._num_class_slots,
[self._kernel_size, self._kernel_size],
activation_fn=None,
normalizer_fn=None,
normalizer_params=None,
scope=self._scope,
biases_initializer=tf.constant_initializer(
self._class_prediction_bias_init))
if self._apply_sigmoid_to_scores:
class_predictions_with_background = tf.sigmoid(
class_predictions_with_background)
batch_size = features.get_shape().as_list()[0]
if batch_size is None:
batch_size = tf.shape(features)[0]
class_predictions_with_background = tf.reshape(
class_predictions_with_background,
[batch_size, -1, self._num_class_slots])
return class_predictions_with_background
# TODO(alirezafathi): See if possible to unify Weight Shared with regular
# convolutional class head.
class WeightSharedConvolutionalClassHead(head.Head):
"""Weight shared convolutional class prediction head.
This head allows sharing the same set of parameters (weights) when called more
then once on different feature maps.
"""
def __init__(self,
num_class_slots,
kernel_size=3,
class_prediction_bias_init=0.0,
use_dropout=False,
dropout_keep_prob=0.8,
use_depthwise=False,
score_converter_fn=tf.identity,
return_flat_predictions=True,
scope='ClassPredictor'):
"""Constructor.
Args:
num_class_slots: number of class slots. Note that num_class_slots may or
may not include an implicit background category.
kernel_size: Size of final convolution kernel.
class_prediction_bias_init: constant value to initialize bias of the last
conv2d layer before class prediction.
use_dropout: Whether to apply dropout to class prediction head.
dropout_keep_prob: Probability of keeping activiations.
use_depthwise: Whether to use depthwise convolutions for prediction
steps. Default is False.
score_converter_fn: Callable elementwise nonlinearity (that takes tensors
as inputs and returns tensors).
return_flat_predictions: If true, returns flattened prediction tensor
of shape [batch, height * width * num_predictions_per_location,
box_coder]. Otherwise returns the prediction tensor before reshaping,
whose shape is [batch, height, width, num_predictions_per_location *
num_class_slots].
scope: Scope name for the convolution operation.
Raises:
ValueError: if use_depthwise is True and kernel_size is 1.
"""
if use_depthwise and (kernel_size == 1):
raise ValueError('Should not use 1x1 kernel when using depthwise conv')
super(WeightSharedConvolutionalClassHead, self).__init__()
self._num_class_slots = num_class_slots
self._kernel_size = kernel_size
self._class_prediction_bias_init = class_prediction_bias_init
self._use_dropout = use_dropout
self._dropout_keep_prob = dropout_keep_prob
self._use_depthwise = use_depthwise
self._score_converter_fn = score_converter_fn
self._return_flat_predictions = return_flat_predictions
self._scope = scope
def predict(self, features, num_predictions_per_location):
"""Predicts boxes.
Args:
features: A float tensor of shape [batch_size, height, width, channels]
containing image features.
num_predictions_per_location: Number of box predictions to be made per
spatial location.
Returns:
class_predictions_with_background: A tensor of shape
[batch_size, num_anchors, num_class_slots] representing the class
predictions for the proposals, or a tensor of shape [batch, height,
width, num_predictions_per_location * num_class_slots] representing
class predictions before reshaping if self._return_flat_predictions is
False.
"""
class_predictions_net = features
if self._use_dropout:
class_predictions_net = slim.dropout(
class_predictions_net, keep_prob=self._dropout_keep_prob)
if self._use_depthwise:
conv_op = functools.partial(slim.separable_conv2d, depth_multiplier=1)
else:
conv_op = slim.conv2d
class_predictions_with_background = conv_op(
class_predictions_net,
num_predictions_per_location * self._num_class_slots,
[self._kernel_size, self._kernel_size],
activation_fn=None, stride=1, padding='SAME',
normalizer_fn=None,
biases_initializer=tf.constant_initializer(
self._class_prediction_bias_init),
scope=self._scope)
batch_size = features.get_shape().as_list()[0]
if batch_size is None:
batch_size = tf.shape(features)[0]
class_predictions_with_background = self._score_converter_fn(
class_predictions_with_background)
if self._return_flat_predictions:
class_predictions_with_background = tf.reshape(
class_predictions_with_background,
[batch_size, -1, self._num_class_slots])
return class_predictions_with_background
|