File size: 6,259 Bytes
0b8359d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tensorflow Example proto parser for data loading.

A parser to decode data containing serialized tensorflow.Example
protos into materialized tensors (numpy arrays).
"""

import numpy as np

from object_detection.core import data_parser
from object_detection.core import standard_fields as fields


class FloatParser(data_parser.DataToNumpyParser):
  """Tensorflow Example float parser."""

  def __init__(self, field_name):
    self.field_name = field_name

  def parse(self, tf_example):
    return np.array(
        tf_example.features.feature[self.field_name].float_list.value,
        dtype=np.float).transpose() if tf_example.features.feature[
            self.field_name].HasField("float_list") else None


class StringParser(data_parser.DataToNumpyParser):
  """Tensorflow Example string parser."""

  def __init__(self, field_name):
    self.field_name = field_name

  def parse(self, tf_example):
    return b"".join(tf_example.features.feature[
        self.field_name].bytes_list.value) if tf_example.features.feature[
            self.field_name].HasField("bytes_list") else None


class Int64Parser(data_parser.DataToNumpyParser):
  """Tensorflow Example int64 parser."""

  def __init__(self, field_name):
    self.field_name = field_name

  def parse(self, tf_example):
    return np.array(
        tf_example.features.feature[self.field_name].int64_list.value,
        dtype=np.int64).transpose() if tf_example.features.feature[
            self.field_name].HasField("int64_list") else None


class BoundingBoxParser(data_parser.DataToNumpyParser):
  """Tensorflow Example bounding box parser."""

  def __init__(self, xmin_field_name, ymin_field_name, xmax_field_name,
               ymax_field_name):
    self.field_names = [
        ymin_field_name, xmin_field_name, ymax_field_name, xmax_field_name
    ]

  def parse(self, tf_example):
    result = []
    parsed = True
    for field_name in self.field_names:
      result.append(tf_example.features.feature[field_name].float_list.value)
      parsed &= (
          tf_example.features.feature[field_name].HasField("float_list"))

    return np.array(result).transpose() if parsed else None


class TfExampleDetectionAndGTParser(data_parser.DataToNumpyParser):
  """Tensorflow Example proto parser."""

  def __init__(self):
    self.items_to_handlers = {
        fields.DetectionResultFields.key:
            StringParser(fields.TfExampleFields.source_id),
        # Object ground truth boxes and classes.
        fields.InputDataFields.groundtruth_boxes: (BoundingBoxParser(
            fields.TfExampleFields.object_bbox_xmin,
            fields.TfExampleFields.object_bbox_ymin,
            fields.TfExampleFields.object_bbox_xmax,
            fields.TfExampleFields.object_bbox_ymax)),
        fields.InputDataFields.groundtruth_classes: (
            Int64Parser(fields.TfExampleFields.object_class_label)),
        # Object detections.
        fields.DetectionResultFields.detection_boxes: (BoundingBoxParser(
            fields.TfExampleFields.detection_bbox_xmin,
            fields.TfExampleFields.detection_bbox_ymin,
            fields.TfExampleFields.detection_bbox_xmax,
            fields.TfExampleFields.detection_bbox_ymax)),
        fields.DetectionResultFields.detection_classes: (
            Int64Parser(fields.TfExampleFields.detection_class_label)),
        fields.DetectionResultFields.detection_scores: (
            FloatParser(fields.TfExampleFields.detection_score)),
    }

    self.optional_items_to_handlers = {
        fields.InputDataFields.groundtruth_difficult:
            Int64Parser(fields.TfExampleFields.object_difficult),
        fields.InputDataFields.groundtruth_group_of:
            Int64Parser(fields.TfExampleFields.object_group_of),
        fields.InputDataFields.groundtruth_image_classes:
            Int64Parser(fields.TfExampleFields.image_class_label),
    }

  def parse(self, tf_example):
    """Parses tensorflow example and returns a tensor dictionary.

    Args:
      tf_example: a tf.Example object.

    Returns:
      A dictionary of the following numpy arrays:
      fields.DetectionResultFields.source_id - string containing original image
      id.
      fields.InputDataFields.groundtruth_boxes - a numpy array containing
      groundtruth boxes.
      fields.InputDataFields.groundtruth_classes - a numpy array containing
      groundtruth classes.
      fields.InputDataFields.groundtruth_group_of - a numpy array containing
      groundtruth group of flag (optional, None if not specified).
      fields.InputDataFields.groundtruth_difficult - a numpy array containing
      groundtruth difficult flag (optional, None if not specified).
      fields.InputDataFields.groundtruth_image_classes - a numpy array
      containing groundtruth image-level labels.
      fields.DetectionResultFields.detection_boxes - a numpy array containing
      detection boxes.
      fields.DetectionResultFields.detection_classes - a numpy array containing
      detection class labels.
      fields.DetectionResultFields.detection_scores - a numpy array containing
      detection scores.
      Returns None if tf.Example was not parsed or non-optional fields were not
      found.
    """
    results_dict = {}
    parsed = True
    for key, parser in self.items_to_handlers.items():
      results_dict[key] = parser.parse(tf_example)
      parsed &= (results_dict[key] is not None)

    for key, parser in self.optional_items_to_handlers.items():
      results_dict[key] = parser.parse(tf_example)

    return results_dict if parsed else None