Spaces:
Running
Running
File size: 9,836 Bytes
0b8359d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
# Lint as: python2, python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Test for exporter_lib_v2.py."""
from __future__ import division
import io
import os
import unittest
from absl.testing import parameterized
import numpy as np
from PIL import Image
import six
import tensorflow.compat.v2 as tf
from object_detection import exporter_lib_v2
from object_detection.builders import model_builder
from object_detection.core import model
from object_detection.core import standard_fields as fields
from object_detection.protos import pipeline_pb2
from object_detection.utils import dataset_util
from object_detection.utils import tf_version
if six.PY2:
import mock # pylint: disable=g-importing-member,g-import-not-at-top
else:
from unittest import mock # pylint: disable=g-importing-member,g-import-not-at-top
class FakeModel(model.DetectionModel):
def __init__(self, conv_weight_scalar=1.0):
super(FakeModel, self).__init__(num_classes=2)
self._conv = tf.keras.layers.Conv2D(
filters=1, kernel_size=1, strides=(1, 1), padding='valid',
kernel_initializer=tf.keras.initializers.Constant(
value=conv_weight_scalar))
def preprocess(self, inputs):
true_image_shapes = [] # Doesn't matter for the fake model.
return tf.identity(inputs), true_image_shapes
def predict(self, preprocessed_inputs, true_image_shapes):
return {'image': self._conv(preprocessed_inputs)}
def postprocess(self, prediction_dict, true_image_shapes):
predict_tensor_sum = tf.reduce_sum(prediction_dict['image'])
with tf.control_dependencies(list(prediction_dict.values())):
postprocessed_tensors = {
'detection_boxes': tf.constant([[[0.0, 0.0, 0.5, 0.5],
[0.5, 0.5, 0.8, 0.8]],
[[0.5, 0.5, 1.0, 1.0],
[0.0, 0.0, 0.0, 0.0]]], tf.float32),
'detection_scores': predict_tensor_sum + tf.constant(
[[0.7, 0.6], [0.9, 0.0]], tf.float32),
'detection_classes': tf.constant([[0, 1],
[1, 0]], tf.float32),
'num_detections': tf.constant([2, 1], tf.float32),
}
return postprocessed_tensors
def restore_map(self, checkpoint_path, fine_tune_checkpoint_type):
pass
def loss(self, prediction_dict, true_image_shapes):
pass
def regularization_losses(self):
pass
def updates(self):
pass
@unittest.skipIf(tf_version.is_tf1(), 'Skipping TF2.X only test.')
class ExportInferenceGraphTest(tf.test.TestCase, parameterized.TestCase):
def _save_checkpoint_from_mock_model(
self, checkpoint_dir, conv_weight_scalar=6.0):
mock_model = FakeModel(conv_weight_scalar)
fake_image = tf.zeros(shape=[1, 10, 10, 3], dtype=tf.float32)
preprocessed_inputs, true_image_shapes = mock_model.preprocess(fake_image)
predictions = mock_model.predict(preprocessed_inputs, true_image_shapes)
mock_model.postprocess(predictions, true_image_shapes)
ckpt = tf.train.Checkpoint(model=mock_model)
exported_checkpoint_manager = tf.train.CheckpointManager(
ckpt, checkpoint_dir, max_to_keep=1)
exported_checkpoint_manager.save(checkpoint_number=0)
@parameterized.parameters(
{'input_type': 'image_tensor'},
{'input_type': 'encoded_image_string_tensor'},
{'input_type': 'tf_example'},
)
def test_export_yields_correct_directory_structure(
self, input_type='image_tensor'):
tmp_dir = self.get_temp_dir()
self._save_checkpoint_from_mock_model(tmp_dir)
with mock.patch.object(
model_builder, 'build', autospec=True) as mock_builder:
mock_builder.return_value = FakeModel()
output_directory = os.path.join(tmp_dir, 'output')
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
exporter_lib_v2.export_inference_graph(
input_type=input_type,
pipeline_config=pipeline_config,
trained_checkpoint_dir=tmp_dir,
output_directory=output_directory)
self.assertTrue(os.path.exists(os.path.join(
output_directory, 'saved_model', 'saved_model.pb')))
self.assertTrue(os.path.exists(os.path.join(
output_directory, 'saved_model', 'variables', 'variables.index')))
self.assertTrue(os.path.exists(os.path.join(
output_directory, 'saved_model', 'variables',
'variables.data-00000-of-00001')))
self.assertTrue(os.path.exists(os.path.join(
output_directory, 'checkpoint', 'ckpt-0.index')))
self.assertTrue(os.path.exists(os.path.join(
output_directory, 'checkpoint', 'ckpt-0.data-00000-of-00001')))
self.assertTrue(os.path.exists(os.path.join(
output_directory, 'pipeline.config')))
def get_dummy_input(self, input_type):
"""Get dummy input for the given input type."""
if input_type == 'image_tensor':
return np.zeros(shape=(1, 20, 20, 3), dtype=np.uint8)
if input_type == 'float_image_tensor':
return np.zeros(shape=(1, 20, 20, 3), dtype=np.float32)
elif input_type == 'encoded_image_string_tensor':
image = Image.new('RGB', (20, 20))
byte_io = io.BytesIO()
image.save(byte_io, 'PNG')
return [byte_io.getvalue()]
elif input_type == 'tf_example':
image_tensor = tf.zeros((20, 20, 3), dtype=tf.uint8)
encoded_jpeg = tf.image.encode_jpeg(tf.constant(image_tensor)).numpy()
example = tf.train.Example(
features=tf.train.Features(
feature={
'image/encoded':
dataset_util.bytes_feature(encoded_jpeg),
'image/format':
dataset_util.bytes_feature(six.b('jpeg')),
'image/source_id':
dataset_util.bytes_feature(six.b('image_id')),
})).SerializeToString()
return [example]
@parameterized.parameters(
{'input_type': 'image_tensor'},
{'input_type': 'encoded_image_string_tensor'},
{'input_type': 'tf_example'},
{'input_type': 'float_image_tensor'},
)
def test_export_saved_model_and_run_inference(
self, input_type='image_tensor'):
tmp_dir = self.get_temp_dir()
self._save_checkpoint_from_mock_model(tmp_dir)
with mock.patch.object(
model_builder, 'build', autospec=True) as mock_builder:
mock_builder.return_value = FakeModel()
output_directory = os.path.join(tmp_dir, 'output')
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
exporter_lib_v2.export_inference_graph(
input_type=input_type,
pipeline_config=pipeline_config,
trained_checkpoint_dir=tmp_dir,
output_directory=output_directory)
saved_model_path = os.path.join(output_directory, 'saved_model')
detect_fn = tf.saved_model.load(saved_model_path)
image = self.get_dummy_input(input_type)
detections = detect_fn(image)
detection_fields = fields.DetectionResultFields
self.assertAllClose(detections[detection_fields.detection_boxes],
[[[0.0, 0.0, 0.5, 0.5],
[0.5, 0.5, 0.8, 0.8]],
[[0.5, 0.5, 1.0, 1.0],
[0.0, 0.0, 0.0, 0.0]]])
self.assertAllClose(detections[detection_fields.detection_scores],
[[0.7, 0.6], [0.9, 0.0]])
self.assertAllClose(detections[detection_fields.detection_classes],
[[1, 2], [2, 1]])
self.assertAllClose(detections[detection_fields.num_detections], [2, 1])
def test_export_checkpoint_and_run_inference_with_image(self):
tmp_dir = self.get_temp_dir()
self._save_checkpoint_from_mock_model(tmp_dir, conv_weight_scalar=2.0)
with mock.patch.object(
model_builder, 'build', autospec=True) as mock_builder:
mock_builder.return_value = FakeModel()
output_directory = os.path.join(tmp_dir, 'output')
pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
exporter_lib_v2.export_inference_graph(
input_type='image_tensor',
pipeline_config=pipeline_config,
trained_checkpoint_dir=tmp_dir,
output_directory=output_directory)
mock_model = FakeModel()
ckpt = tf.compat.v2.train.Checkpoint(
model=mock_model)
checkpoint_dir = os.path.join(tmp_dir, 'output', 'checkpoint')
manager = tf.compat.v2.train.CheckpointManager(
ckpt, checkpoint_dir, max_to_keep=7)
ckpt.restore(manager.latest_checkpoint).expect_partial()
fake_image = tf.ones(shape=[1, 5, 5, 3], dtype=tf.float32)
preprocessed_inputs, true_image_shapes = mock_model.preprocess(fake_image)
predictions = mock_model.predict(preprocessed_inputs, true_image_shapes)
detections = mock_model.postprocess(predictions, true_image_shapes)
# 150 = conv_weight_scalar * height * width * channels = 2 * 5 * 5 * 3.
self.assertAllClose(detections['detection_scores'],
[[150 + 0.7, 150 + 0.6], [150 + 0.9, 150 + 0.0]])
if __name__ == '__main__':
tf.enable_v2_behavior()
tf.test.main()
|