File size: 33,368 Bytes
0b8359d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tensorflow Example proto decoder for object detection.

A decoder to decode string tensors containing serialized tensorflow.Example
protos for object detection.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import enum
import numpy as np
from six.moves import zip
import tensorflow.compat.v1 as tf
from tf_slim import tfexample_decoder as slim_example_decoder
from object_detection.core import data_decoder
from object_detection.core import standard_fields as fields
from object_detection.protos import input_reader_pb2
from object_detection.utils import label_map_util

# pylint: disable=g-import-not-at-top
try:
  from tensorflow.contrib import lookup as contrib_lookup

except ImportError:
  # TF 2.0 doesn't ship with contrib.
  pass
# pylint: enable=g-import-not-at-top

_LABEL_OFFSET = 1


class Visibility(enum.Enum):
  """Visibility definitions.

  This follows the MS Coco convention (http://cocodataset.org/#format-data).
  """
  # Keypoint is not labeled.
  UNLABELED = 0
  # Keypoint is labeled but falls outside the object segment (e.g. occluded).
  NOT_VISIBLE = 1
  # Keypoint is labeled and visible.
  VISIBLE = 2


class _ClassTensorHandler(slim_example_decoder.Tensor):
  """An ItemHandler to fetch class ids from class text."""

  def __init__(self,
               tensor_key,
               label_map_proto_file,
               shape_keys=None,
               shape=None,
               default_value=''):
    """Initializes the LookupTensor handler.

    Simply calls a vocabulary (most often, a label mapping) lookup.

    Args:
      tensor_key: the name of the `TFExample` feature to read the tensor from.
      label_map_proto_file: File path to a text format LabelMapProto message
        mapping class text to id.
      shape_keys: Optional name or list of names of the TF-Example feature in
        which the tensor shape is stored. If a list, then each corresponds to
        one dimension of the shape.
      shape: Optional output shape of the `Tensor`. If provided, the `Tensor` is
        reshaped accordingly.
      default_value: The value used when the `tensor_key` is not found in a
        particular `TFExample`.

    Raises:
      ValueError: if both `shape_keys` and `shape` are specified.
    """
    name_to_id = label_map_util.get_label_map_dict(
        label_map_proto_file, use_display_name=False)
    # We use a default_value of -1, but we expect all labels to be contained
    # in the label map.
    try:
      # Dynamically try to load the tf v2 lookup, falling back to contrib
      lookup = tf.compat.v2.lookup
      hash_table_class = tf.compat.v2.lookup.StaticHashTable
    except AttributeError:
      lookup = contrib_lookup
      hash_table_class = contrib_lookup.HashTable
    name_to_id_table = hash_table_class(
        initializer=lookup.KeyValueTensorInitializer(
            keys=tf.constant(list(name_to_id.keys())),
            values=tf.constant(list(name_to_id.values()), dtype=tf.int64)),
        default_value=-1)
    display_name_to_id = label_map_util.get_label_map_dict(
        label_map_proto_file, use_display_name=True)
    # We use a default_value of -1, but we expect all labels to be contained
    # in the label map.
    display_name_to_id_table = hash_table_class(
        initializer=lookup.KeyValueTensorInitializer(
            keys=tf.constant(list(display_name_to_id.keys())),
            values=tf.constant(
                list(display_name_to_id.values()), dtype=tf.int64)),
        default_value=-1)

    self._name_to_id_table = name_to_id_table
    self._display_name_to_id_table = display_name_to_id_table
    super(_ClassTensorHandler, self).__init__(tensor_key, shape_keys, shape,
                                              default_value)

  def tensors_to_item(self, keys_to_tensors):
    unmapped_tensor = super(_ClassTensorHandler,
                            self).tensors_to_item(keys_to_tensors)
    return tf.maximum(self._name_to_id_table.lookup(unmapped_tensor),
                      self._display_name_to_id_table.lookup(unmapped_tensor))


class _BackupHandler(slim_example_decoder.ItemHandler):
  """An ItemHandler that tries two ItemHandlers in order."""

  def __init__(self, handler, backup):
    """Initializes the BackupHandler handler.

    If the first Handler's tensors_to_item returns a Tensor with no elements,
    the second Handler is used.

    Args:
      handler: The primary ItemHandler.
      backup: The backup ItemHandler.

    Raises:
      ValueError: if either is not an ItemHandler.
    """
    if not isinstance(handler, slim_example_decoder.ItemHandler):
      raise ValueError('Primary handler is of type %s instead of ItemHandler' %
                       type(handler))
    if not isinstance(backup, slim_example_decoder.ItemHandler):
      raise ValueError(
          'Backup handler is of type %s instead of ItemHandler' % type(backup))
    self._handler = handler
    self._backup = backup
    super(_BackupHandler, self).__init__(handler.keys + backup.keys)

  def tensors_to_item(self, keys_to_tensors):
    item = self._handler.tensors_to_item(keys_to_tensors)
    return tf.cond(
        pred=tf.equal(tf.reduce_prod(tf.shape(item)), 0),
        true_fn=lambda: self._backup.tensors_to_item(keys_to_tensors),
        false_fn=lambda: item)


class TfExampleDecoder(data_decoder.DataDecoder):
  """Tensorflow Example proto decoder."""

  def __init__(self,
               load_instance_masks=False,
               instance_mask_type=input_reader_pb2.NUMERICAL_MASKS,
               label_map_proto_file=None,
               use_display_name=False,
               dct_method='',
               num_keypoints=0,
               num_additional_channels=0,
               load_multiclass_scores=False,
               load_context_features=False,
               expand_hierarchy_labels=False):
    """Constructor sets keys_to_features and items_to_handlers.

    Args:
      load_instance_masks: whether or not to load and handle instance masks.
      instance_mask_type: type of instance masks. Options are provided in
        input_reader.proto. This is only used if `load_instance_masks` is True.
      label_map_proto_file: a file path to a
        object_detection.protos.StringIntLabelMap proto. If provided, then the
        mapped IDs of 'image/object/class/text' will take precedence over the
        existing 'image/object/class/label' ID.  Also, if provided, it is
        assumed that 'image/object/class/text' will be in the data.
      use_display_name: whether or not to use the `display_name` for label
        mapping (instead of `name`).  Only used if label_map_proto_file is
        provided.
      dct_method: An optional string. Defaults to None. It only takes
        effect when image format is jpeg, used to specify a hint about the
        algorithm used for jpeg decompression. Currently valid values
        are ['INTEGER_FAST', 'INTEGER_ACCURATE']. The hint may be ignored, for
        example, the jpeg library does not have that specific option.
      num_keypoints: the number of keypoints per object.
      num_additional_channels: how many additional channels to use.
      load_multiclass_scores: Whether to load multiclass scores associated with
        boxes.
      load_context_features: Whether to load information from context_features,
        to provide additional context to a detection model for training and/or
        inference.
      expand_hierarchy_labels: Expands the object and image labels taking into
        account the provided hierarchy in the label_map_proto_file. For positive
        classes, the labels are extended to ancestor. For negative classes,
        the labels are expanded to descendants.

    Raises:
      ValueError: If `instance_mask_type` option is not one of
        input_reader_pb2.DEFAULT, input_reader_pb2.NUMERICAL, or
        input_reader_pb2.PNG_MASKS.
      ValueError: If `expand_labels_hierarchy` is True, but the
        `label_map_proto_file` is not provided.
    """
    # TODO(rathodv): delete unused `use_display_name` argument once we change
    # other decoders to handle label maps similarly.
    del use_display_name
    self.keys_to_features = {
        'image/encoded':
            tf.FixedLenFeature((), tf.string, default_value=''),
        'image/format':
            tf.FixedLenFeature((), tf.string, default_value='jpeg'),
        'image/filename':
            tf.FixedLenFeature((), tf.string, default_value=''),
        'image/key/sha256':
            tf.FixedLenFeature((), tf.string, default_value=''),
        'image/source_id':
            tf.FixedLenFeature((), tf.string, default_value=''),
        'image/height':
            tf.FixedLenFeature((), tf.int64, default_value=1),
        'image/width':
            tf.FixedLenFeature((), tf.int64, default_value=1),
        # Image-level labels.
        'image/class/text':
            tf.VarLenFeature(tf.string),
        'image/class/label':
            tf.VarLenFeature(tf.int64),
        'image/class/confidence':
            tf.VarLenFeature(tf.float32),
        # Object boxes and classes.
        'image/object/bbox/xmin':
            tf.VarLenFeature(tf.float32),
        'image/object/bbox/xmax':
            tf.VarLenFeature(tf.float32),
        'image/object/bbox/ymin':
            tf.VarLenFeature(tf.float32),
        'image/object/bbox/ymax':
            tf.VarLenFeature(tf.float32),
        'image/object/class/label':
            tf.VarLenFeature(tf.int64),
        'image/object/class/text':
            tf.VarLenFeature(tf.string),
        'image/object/area':
            tf.VarLenFeature(tf.float32),
        'image/object/is_crowd':
            tf.VarLenFeature(tf.int64),
        'image/object/difficult':
            tf.VarLenFeature(tf.int64),
        'image/object/group_of':
            tf.VarLenFeature(tf.int64),
        'image/object/weight':
            tf.VarLenFeature(tf.float32),

    }
    # We are checking `dct_method` instead of passing it directly in order to
    # ensure TF version 1.6 compatibility.
    if dct_method:
      image = slim_example_decoder.Image(
          image_key='image/encoded',
          format_key='image/format',
          channels=3,
          dct_method=dct_method)
      additional_channel_image = slim_example_decoder.Image(
          image_key='image/additional_channels/encoded',
          format_key='image/format',
          channels=1,
          repeated=True,
          dct_method=dct_method)
    else:
      image = slim_example_decoder.Image(
          image_key='image/encoded', format_key='image/format', channels=3)
      additional_channel_image = slim_example_decoder.Image(
          image_key='image/additional_channels/encoded',
          format_key='image/format',
          channels=1,
          repeated=True)
    self.items_to_handlers = {
        fields.InputDataFields.image:
            image,
        fields.InputDataFields.source_id: (
            slim_example_decoder.Tensor('image/source_id')),
        fields.InputDataFields.key: (
            slim_example_decoder.Tensor('image/key/sha256')),
        fields.InputDataFields.filename: (
            slim_example_decoder.Tensor('image/filename')),
        # Image-level labels.
        fields.InputDataFields.groundtruth_image_confidences: (
            slim_example_decoder.Tensor('image/class/confidence')),
        # Object boxes and classes.
        fields.InputDataFields.groundtruth_boxes: (
            slim_example_decoder.BoundingBox(['ymin', 'xmin', 'ymax', 'xmax'],
                                             'image/object/bbox/')),
        fields.InputDataFields.groundtruth_area:
            slim_example_decoder.Tensor('image/object/area'),
        fields.InputDataFields.groundtruth_is_crowd: (
            slim_example_decoder.Tensor('image/object/is_crowd')),
        fields.InputDataFields.groundtruth_difficult: (
            slim_example_decoder.Tensor('image/object/difficult')),
        fields.InputDataFields.groundtruth_group_of: (
            slim_example_decoder.Tensor('image/object/group_of')),
        fields.InputDataFields.groundtruth_weights: (
            slim_example_decoder.Tensor('image/object/weight')),

    }
    if load_multiclass_scores:
      self.keys_to_features[
          'image/object/class/multiclass_scores'] = tf.VarLenFeature(tf.float32)
      self.items_to_handlers[fields.InputDataFields.multiclass_scores] = (
          slim_example_decoder.Tensor('image/object/class/multiclass_scores'))

    if load_context_features:
      self.keys_to_features[
          'image/context_features'] = tf.VarLenFeature(tf.float32)
      self.items_to_handlers[fields.InputDataFields.context_features] = (
          slim_example_decoder.ItemHandlerCallback(
              ['image/context_features', 'image/context_feature_length'],
              self._reshape_context_features))

      self.keys_to_features[
          'image/context_feature_length'] = tf.FixedLenFeature((), tf.int64)
      self.items_to_handlers[fields.InputDataFields.context_feature_length] = (
          slim_example_decoder.Tensor('image/context_feature_length'))

    if num_additional_channels > 0:
      self.keys_to_features[
          'image/additional_channels/encoded'] = tf.FixedLenFeature(
              (num_additional_channels,), tf.string)
      self.items_to_handlers[
          fields.InputDataFields.
          image_additional_channels] = additional_channel_image
    self._num_keypoints = num_keypoints
    if num_keypoints > 0:
      self.keys_to_features['image/object/keypoint/x'] = (
          tf.VarLenFeature(tf.float32))
      self.keys_to_features['image/object/keypoint/y'] = (
          tf.VarLenFeature(tf.float32))
      self.keys_to_features['image/object/keypoint/visibility'] = (
          tf.VarLenFeature(tf.int64))
      self.items_to_handlers[fields.InputDataFields.groundtruth_keypoints] = (
          slim_example_decoder.ItemHandlerCallback(
              ['image/object/keypoint/y', 'image/object/keypoint/x'],
              self._reshape_keypoints))
      kpt_vis_field = fields.InputDataFields.groundtruth_keypoint_visibilities
      self.items_to_handlers[kpt_vis_field] = (
          slim_example_decoder.ItemHandlerCallback(
              ['image/object/keypoint/x', 'image/object/keypoint/visibility'],
              self._reshape_keypoint_visibilities))
    if load_instance_masks:
      if instance_mask_type in (input_reader_pb2.DEFAULT,
                                input_reader_pb2.NUMERICAL_MASKS):
        self.keys_to_features['image/object/mask'] = (
            tf.VarLenFeature(tf.float32))
        self.items_to_handlers[
            fields.InputDataFields.groundtruth_instance_masks] = (
                slim_example_decoder.ItemHandlerCallback(
                    ['image/object/mask', 'image/height', 'image/width'],
                    self._reshape_instance_masks))
      elif instance_mask_type == input_reader_pb2.PNG_MASKS:
        self.keys_to_features['image/object/mask'] = tf.VarLenFeature(tf.string)
        self.items_to_handlers[
            fields.InputDataFields.groundtruth_instance_masks] = (
                slim_example_decoder.ItemHandlerCallback(
                    ['image/object/mask', 'image/height', 'image/width'],
                    self._decode_png_instance_masks))
      else:
        raise ValueError('Did not recognize the `instance_mask_type` option.')
    if label_map_proto_file:
      # If the label_map_proto is provided, try to use it in conjunction with
      # the class text, and fall back to a materialized ID.
      label_handler = _BackupHandler(
          _ClassTensorHandler(
              'image/object/class/text', label_map_proto_file,
              default_value=''),
          slim_example_decoder.Tensor('image/object/class/label'))
      image_label_handler = _BackupHandler(
          _ClassTensorHandler(
              fields.TfExampleFields.image_class_text,
              label_map_proto_file,
              default_value=''),
          slim_example_decoder.Tensor(fields.TfExampleFields.image_class_label))
    else:
      label_handler = slim_example_decoder.Tensor('image/object/class/label')
      image_label_handler = slim_example_decoder.Tensor(
          fields.TfExampleFields.image_class_label)
    self.items_to_handlers[
        fields.InputDataFields.groundtruth_classes] = label_handler
    self.items_to_handlers[
        fields.InputDataFields.groundtruth_image_classes] = image_label_handler

    self._expand_hierarchy_labels = expand_hierarchy_labels
    self._ancestors_lut = None
    self._descendants_lut = None
    if expand_hierarchy_labels:
      if label_map_proto_file:
        ancestors_lut, descendants_lut = (
            label_map_util.get_label_map_hierarchy_lut(label_map_proto_file,
                                                       True))
        self._ancestors_lut = tf.constant(ancestors_lut, dtype=tf.int64)
        self._descendants_lut = tf.constant(descendants_lut, dtype=tf.int64)
      else:
        raise ValueError('In order to expand labels, the label_map_proto_file '
                         'has to be provided.')

  def decode(self, tf_example_string_tensor):
    """Decodes serialized tensorflow example and returns a tensor dictionary.

    Args:
      tf_example_string_tensor: a string tensor holding a serialized tensorflow
        example proto.

    Returns:
      A dictionary of the following tensors.
      fields.InputDataFields.image - 3D uint8 tensor of shape [None, None, 3]
        containing image.
      fields.InputDataFields.original_image_spatial_shape - 1D int32 tensor of
        shape [2] containing shape of the image.
      fields.InputDataFields.source_id - string tensor containing original
        image id.
      fields.InputDataFields.key - string tensor with unique sha256 hash key.
      fields.InputDataFields.filename - string tensor with original dataset
        filename.
      fields.InputDataFields.groundtruth_boxes - 2D float32 tensor of shape
        [None, 4] containing box corners.
      fields.InputDataFields.groundtruth_classes - 1D int64 tensor of shape
        [None] containing classes for the boxes.
      fields.InputDataFields.groundtruth_weights - 1D float32 tensor of
        shape [None] indicating the weights of groundtruth boxes.
      fields.InputDataFields.groundtruth_area - 1D float32 tensor of shape
        [None] containing containing object mask area in pixel squared.
      fields.InputDataFields.groundtruth_is_crowd - 1D bool tensor of shape
        [None] indicating if the boxes enclose a crowd.

    Optional:
      fields.InputDataFields.groundtruth_image_confidences - 1D float tensor of
        shape [None] indicating if a class is present in the image (1.0) or
        a class is not present in the image (0.0).
      fields.InputDataFields.image_additional_channels - 3D uint8 tensor of
        shape [None, None, num_additional_channels]. 1st dim is height; 2nd dim
        is width; 3rd dim is the number of additional channels.
      fields.InputDataFields.groundtruth_difficult - 1D bool tensor of shape
        [None] indicating if the boxes represent `difficult` instances.
      fields.InputDataFields.groundtruth_group_of - 1D bool tensor of shape
        [None] indicating if the boxes represent `group_of` instances.
      fields.InputDataFields.groundtruth_keypoints - 3D float32 tensor of
        shape [None, num_keypoints, 2] containing keypoints, where the
        coordinates of the keypoints are ordered (y, x).
      fields.InputDataFields.groundtruth_keypoint_visibilities - 2D bool
        tensor of shape [None, num_keypoints] containing keypoint visibilites.
      fields.InputDataFields.groundtruth_instance_masks - 3D float32 tensor of
        shape [None, None, None] containing instance masks.
      fields.InputDataFields.groundtruth_image_classes - 1D int64 of shape
        [None] containing classes for the boxes.
      fields.InputDataFields.multiclass_scores - 1D float32 tensor of shape
        [None * num_classes] containing flattened multiclass scores for
        groundtruth boxes.
      fields.InputDataFields.context_features - 1D float32 tensor of shape
        [context_feature_length * num_context_features]
      fields.InputDataFields.context_feature_length - int32 tensor specifying
        the length of each feature in context_features
    """
    serialized_example = tf.reshape(tf_example_string_tensor, shape=[])
    decoder = slim_example_decoder.TFExampleDecoder(self.keys_to_features,
                                                    self.items_to_handlers)
    keys = decoder.list_items()
    tensors = decoder.decode(serialized_example, items=keys)
    tensor_dict = dict(zip(keys, tensors))
    is_crowd = fields.InputDataFields.groundtruth_is_crowd
    tensor_dict[is_crowd] = tf.cast(tensor_dict[is_crowd], dtype=tf.bool)
    tensor_dict[fields.InputDataFields.image].set_shape([None, None, 3])
    tensor_dict[fields.InputDataFields.original_image_spatial_shape] = tf.shape(
        tensor_dict[fields.InputDataFields.image])[:2]

    if fields.InputDataFields.image_additional_channels in tensor_dict:
      channels = tensor_dict[fields.InputDataFields.image_additional_channels]
      channels = tf.squeeze(channels, axis=3)
      channels = tf.transpose(channels, perm=[1, 2, 0])
      tensor_dict[fields.InputDataFields.image_additional_channels] = channels

    def default_groundtruth_weights():
      return tf.ones(
          [tf.shape(tensor_dict[fields.InputDataFields.groundtruth_boxes])[0]],
          dtype=tf.float32)

    tensor_dict[fields.InputDataFields.groundtruth_weights] = tf.cond(
        tf.greater(
            tf.shape(
                tensor_dict[fields.InputDataFields.groundtruth_weights])[0],
            0), lambda: tensor_dict[fields.InputDataFields.groundtruth_weights],
        default_groundtruth_weights)

    if fields.InputDataFields.groundtruth_keypoints in tensor_dict:
      # Set all keypoints that are not labeled to NaN.
      gt_kpt_fld = fields.InputDataFields.groundtruth_keypoints
      gt_kpt_vis_fld = fields.InputDataFields.groundtruth_keypoint_visibilities
      visibilities_tiled = tf.tile(
          tf.expand_dims(tensor_dict[gt_kpt_vis_fld], -1),
          [1, 1, 2])
      tensor_dict[gt_kpt_fld] = tf.where(
          visibilities_tiled,
          tensor_dict[gt_kpt_fld],
          np.nan * tf.ones_like(tensor_dict[gt_kpt_fld]))

    if self._expand_hierarchy_labels:
      input_fields = fields.InputDataFields
      image_classes, image_confidences = self._expand_image_label_hierarchy(
          tensor_dict[input_fields.groundtruth_image_classes],
          tensor_dict[input_fields.groundtruth_image_confidences])
      tensor_dict[input_fields.groundtruth_image_classes] = image_classes
      tensor_dict[input_fields.groundtruth_image_confidences] = (
          image_confidences)

      box_fields = [
          fields.InputDataFields.groundtruth_group_of,
          fields.InputDataFields.groundtruth_is_crowd,
          fields.InputDataFields.groundtruth_difficult,
          fields.InputDataFields.groundtruth_area,
          fields.InputDataFields.groundtruth_boxes,
          fields.InputDataFields.groundtruth_weights,
      ]

      def expand_field(field_name):
        return self._expansion_box_field_labels(
            tensor_dict[input_fields.groundtruth_classes],
            tensor_dict[field_name])

      # pylint: disable=cell-var-from-loop
      for field in box_fields:
        if field in tensor_dict:
          tensor_dict[field] = tf.cond(
              tf.size(tensor_dict[field]) > 0, lambda: expand_field(field),
              lambda: tensor_dict[field])
      # pylint: enable=cell-var-from-loop

      tensor_dict[input_fields.groundtruth_classes] = (
          self._expansion_box_field_labels(
              tensor_dict[input_fields.groundtruth_classes],
              tensor_dict[input_fields.groundtruth_classes], True))

    if fields.InputDataFields.groundtruth_group_of in tensor_dict:
      group_of = fields.InputDataFields.groundtruth_group_of
      tensor_dict[group_of] = tf.cast(tensor_dict[group_of], dtype=tf.bool)

    return tensor_dict

  def _reshape_keypoints(self, keys_to_tensors):
    """Reshape keypoints.

    The keypoints are reshaped to [num_instances, num_keypoints, 2].

    Args:
      keys_to_tensors: a dictionary from keys to tensors. Expected keys are:
        'image/object/keypoint/x'
        'image/object/keypoint/y'

    Returns:
      A 3-D float tensor of shape [num_instances, num_keypoints, 2] with values
        in [0, 1].
    """
    y = keys_to_tensors['image/object/keypoint/y']
    if isinstance(y, tf.SparseTensor):
      y = tf.sparse_tensor_to_dense(y)
    y = tf.expand_dims(y, 1)
    x = keys_to_tensors['image/object/keypoint/x']
    if isinstance(x, tf.SparseTensor):
      x = tf.sparse_tensor_to_dense(x)
    x = tf.expand_dims(x, 1)
    keypoints = tf.concat([y, x], 1)
    keypoints = tf.reshape(keypoints, [-1, self._num_keypoints, 2])
    return keypoints

  def _reshape_keypoint_visibilities(self, keys_to_tensors):
    """Reshape keypoint visibilities.

    The keypoint visibilities are reshaped to [num_instances,
    num_keypoints].

    The raw keypoint visibilities are expected to conform to the
    MSCoco definition. See Visibility enum.

    The returned boolean is True for the labeled case (either
    Visibility.NOT_VISIBLE or Visibility.VISIBLE). These are the same categories
    that COCO uses to evaluate keypoint detection performance:
    http://cocodataset.org/#keypoints-eval

    If image/object/keypoint/visibility is not provided, visibilities will be
    set to True for finite keypoint coordinate values, and 0 if the coordinates
    are NaN.

    Args:
      keys_to_tensors: a dictionary from keys to tensors. Expected keys are:
        'image/object/keypoint/x'
        'image/object/keypoint/visibility'

    Returns:
      A 2-D bool tensor of shape [num_instances, num_keypoints] with values
        in {0, 1}. 1 if the keypoint is labeled, 0 otherwise.
    """
    x = keys_to_tensors['image/object/keypoint/x']
    vis = keys_to_tensors['image/object/keypoint/visibility']
    if isinstance(vis, tf.SparseTensor):
      vis = tf.sparse_tensor_to_dense(vis)
    if isinstance(x, tf.SparseTensor):
      x = tf.sparse_tensor_to_dense(x)

    default_vis = tf.where(
        tf.math.is_nan(x),
        Visibility.UNLABELED.value * tf.ones_like(x, dtype=tf.int64),
        Visibility.VISIBLE.value * tf.ones_like(x, dtype=tf.int64))
    # Use visibility if provided, otherwise use the default visibility.
    vis = tf.cond(tf.equal(tf.size(x), tf.size(vis)),
                  true_fn=lambda: vis,
                  false_fn=lambda: default_vis)
    vis = tf.math.logical_or(
        tf.math.equal(vis, Visibility.NOT_VISIBLE.value),
        tf.math.equal(vis, Visibility.VISIBLE.value))
    vis = tf.reshape(vis, [-1, self._num_keypoints])
    return vis

  def _reshape_instance_masks(self, keys_to_tensors):
    """Reshape instance segmentation masks.

    The instance segmentation masks are reshaped to [num_instances, height,
    width].

    Args:
      keys_to_tensors: a dictionary from keys to tensors.

    Returns:
      A 3-D float tensor of shape [num_instances, height, width] with values
        in {0, 1}.
    """
    height = keys_to_tensors['image/height']
    width = keys_to_tensors['image/width']
    to_shape = tf.cast(tf.stack([-1, height, width]), tf.int32)
    masks = keys_to_tensors['image/object/mask']
    if isinstance(masks, tf.SparseTensor):
      masks = tf.sparse_tensor_to_dense(masks)
    masks = tf.reshape(
        tf.cast(tf.greater(masks, 0.0), dtype=tf.float32), to_shape)
    return tf.cast(masks, tf.float32)

  def _reshape_context_features(self, keys_to_tensors):
    """Reshape context features.

    The instance context_features are reshaped to
      [num_context_features, context_feature_length]

    Args:
      keys_to_tensors: a dictionary from keys to tensors.

    Returns:
      A 2-D float tensor of shape [num_context_features, context_feature_length]
    """
    context_feature_length = keys_to_tensors['image/context_feature_length']
    to_shape = tf.cast(tf.stack([-1, context_feature_length]), tf.int32)
    context_features = keys_to_tensors['image/context_features']
    if isinstance(context_features, tf.SparseTensor):
      context_features = tf.sparse_tensor_to_dense(context_features)
    context_features = tf.reshape(context_features, to_shape)
    return context_features

  def _decode_png_instance_masks(self, keys_to_tensors):
    """Decode PNG instance segmentation masks and stack into dense tensor.

    The instance segmentation masks are reshaped to [num_instances, height,
    width].

    Args:
      keys_to_tensors: a dictionary from keys to tensors.

    Returns:
      A 3-D float tensor of shape [num_instances, height, width] with values
        in {0, 1}.
    """

    def decode_png_mask(image_buffer):
      image = tf.squeeze(
          tf.image.decode_image(image_buffer, channels=1), axis=2)
      image.set_shape([None, None])
      image = tf.cast(tf.greater(image, 0), dtype=tf.float32)
      return image

    png_masks = keys_to_tensors['image/object/mask']
    height = keys_to_tensors['image/height']
    width = keys_to_tensors['image/width']
    if isinstance(png_masks, tf.SparseTensor):
      png_masks = tf.sparse_tensor_to_dense(png_masks, default_value='')
    return tf.cond(
        tf.greater(tf.size(png_masks), 0),
        lambda: tf.map_fn(decode_png_mask, png_masks, dtype=tf.float32),
        lambda: tf.zeros(tf.cast(tf.stack([0, height, width]), dtype=tf.int32)))

  def _expand_image_label_hierarchy(self, image_classes, image_confidences):
    """Expand image level labels according to the hierarchy.

    Args:
      image_classes: Int64 tensor with the image level class ids for a sample.
      image_confidences: Float tensor signaling whether a class id is present in
        the image (1.0) or not present (0.0).

    Returns:
      new_image_classes: Int64 tensor equal to expanding image_classes.
      new_image_confidences: Float tensor equal to expanding image_confidences.
    """

    def expand_labels(relation_tensor, confidence_value):
      """Expand to ancestors or descendants depending on arguments."""
      mask = tf.equal(image_confidences, confidence_value)
      target_image_classes = tf.boolean_mask(image_classes, mask)
      expanded_indices = tf.reduce_any((tf.gather(
          relation_tensor, target_image_classes - _LABEL_OFFSET, axis=0) > 0),
                                       axis=0)
      expanded_indices = tf.where(expanded_indices)[:, 0] + _LABEL_OFFSET
      new_groundtruth_image_classes = (
          tf.concat([
              tf.boolean_mask(image_classes, tf.logical_not(mask)),
              expanded_indices,
          ],
                    axis=0))
      new_groundtruth_image_confidences = (
          tf.concat([
              tf.boolean_mask(image_confidences, tf.logical_not(mask)),
              tf.ones([tf.shape(expanded_indices)[0]],
                      dtype=image_confidences.dtype) * confidence_value,
          ],
                    axis=0))
      return new_groundtruth_image_classes, new_groundtruth_image_confidences

    image_classes, image_confidences = expand_labels(self._ancestors_lut, 1.0)
    new_image_classes, new_image_confidences = expand_labels(
        self._descendants_lut, 0.0)
    return new_image_classes, new_image_confidences

  def _expansion_box_field_labels(self,
                                  object_classes,
                                  object_field,
                                  copy_class_id=False):
    """Expand the labels of a specific object field according to the hierarchy.

    Args:
      object_classes: Int64 tensor with the class id for each element in
        object_field.
      object_field: Tensor to be expanded.
      copy_class_id: Boolean to choose whether to use class id values in the
        output tensor instead of replicating the original values.

    Returns:
      A tensor with the result of expanding object_field.
    """
    expanded_indices = tf.gather(
        self._ancestors_lut, object_classes - _LABEL_OFFSET, axis=0)
    if copy_class_id:
      new_object_field = tf.where(expanded_indices > 0)[:, 1] + _LABEL_OFFSET
    else:
      new_object_field = tf.repeat(
          object_field, tf.reduce_sum(expanded_indices, axis=1), axis=0)
    return new_object_field