Spaces:
Running
Running
File size: 33,368 Bytes
0b8359d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 |
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tensorflow Example proto decoder for object detection.
A decoder to decode string tensors containing serialized tensorflow.Example
protos for object detection.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import enum
import numpy as np
from six.moves import zip
import tensorflow.compat.v1 as tf
from tf_slim import tfexample_decoder as slim_example_decoder
from object_detection.core import data_decoder
from object_detection.core import standard_fields as fields
from object_detection.protos import input_reader_pb2
from object_detection.utils import label_map_util
# pylint: disable=g-import-not-at-top
try:
from tensorflow.contrib import lookup as contrib_lookup
except ImportError:
# TF 2.0 doesn't ship with contrib.
pass
# pylint: enable=g-import-not-at-top
_LABEL_OFFSET = 1
class Visibility(enum.Enum):
"""Visibility definitions.
This follows the MS Coco convention (http://cocodataset.org/#format-data).
"""
# Keypoint is not labeled.
UNLABELED = 0
# Keypoint is labeled but falls outside the object segment (e.g. occluded).
NOT_VISIBLE = 1
# Keypoint is labeled and visible.
VISIBLE = 2
class _ClassTensorHandler(slim_example_decoder.Tensor):
"""An ItemHandler to fetch class ids from class text."""
def __init__(self,
tensor_key,
label_map_proto_file,
shape_keys=None,
shape=None,
default_value=''):
"""Initializes the LookupTensor handler.
Simply calls a vocabulary (most often, a label mapping) lookup.
Args:
tensor_key: the name of the `TFExample` feature to read the tensor from.
label_map_proto_file: File path to a text format LabelMapProto message
mapping class text to id.
shape_keys: Optional name or list of names of the TF-Example feature in
which the tensor shape is stored. If a list, then each corresponds to
one dimension of the shape.
shape: Optional output shape of the `Tensor`. If provided, the `Tensor` is
reshaped accordingly.
default_value: The value used when the `tensor_key` is not found in a
particular `TFExample`.
Raises:
ValueError: if both `shape_keys` and `shape` are specified.
"""
name_to_id = label_map_util.get_label_map_dict(
label_map_proto_file, use_display_name=False)
# We use a default_value of -1, but we expect all labels to be contained
# in the label map.
try:
# Dynamically try to load the tf v2 lookup, falling back to contrib
lookup = tf.compat.v2.lookup
hash_table_class = tf.compat.v2.lookup.StaticHashTable
except AttributeError:
lookup = contrib_lookup
hash_table_class = contrib_lookup.HashTable
name_to_id_table = hash_table_class(
initializer=lookup.KeyValueTensorInitializer(
keys=tf.constant(list(name_to_id.keys())),
values=tf.constant(list(name_to_id.values()), dtype=tf.int64)),
default_value=-1)
display_name_to_id = label_map_util.get_label_map_dict(
label_map_proto_file, use_display_name=True)
# We use a default_value of -1, but we expect all labels to be contained
# in the label map.
display_name_to_id_table = hash_table_class(
initializer=lookup.KeyValueTensorInitializer(
keys=tf.constant(list(display_name_to_id.keys())),
values=tf.constant(
list(display_name_to_id.values()), dtype=tf.int64)),
default_value=-1)
self._name_to_id_table = name_to_id_table
self._display_name_to_id_table = display_name_to_id_table
super(_ClassTensorHandler, self).__init__(tensor_key, shape_keys, shape,
default_value)
def tensors_to_item(self, keys_to_tensors):
unmapped_tensor = super(_ClassTensorHandler,
self).tensors_to_item(keys_to_tensors)
return tf.maximum(self._name_to_id_table.lookup(unmapped_tensor),
self._display_name_to_id_table.lookup(unmapped_tensor))
class _BackupHandler(slim_example_decoder.ItemHandler):
"""An ItemHandler that tries two ItemHandlers in order."""
def __init__(self, handler, backup):
"""Initializes the BackupHandler handler.
If the first Handler's tensors_to_item returns a Tensor with no elements,
the second Handler is used.
Args:
handler: The primary ItemHandler.
backup: The backup ItemHandler.
Raises:
ValueError: if either is not an ItemHandler.
"""
if not isinstance(handler, slim_example_decoder.ItemHandler):
raise ValueError('Primary handler is of type %s instead of ItemHandler' %
type(handler))
if not isinstance(backup, slim_example_decoder.ItemHandler):
raise ValueError(
'Backup handler is of type %s instead of ItemHandler' % type(backup))
self._handler = handler
self._backup = backup
super(_BackupHandler, self).__init__(handler.keys + backup.keys)
def tensors_to_item(self, keys_to_tensors):
item = self._handler.tensors_to_item(keys_to_tensors)
return tf.cond(
pred=tf.equal(tf.reduce_prod(tf.shape(item)), 0),
true_fn=lambda: self._backup.tensors_to_item(keys_to_tensors),
false_fn=lambda: item)
class TfExampleDecoder(data_decoder.DataDecoder):
"""Tensorflow Example proto decoder."""
def __init__(self,
load_instance_masks=False,
instance_mask_type=input_reader_pb2.NUMERICAL_MASKS,
label_map_proto_file=None,
use_display_name=False,
dct_method='',
num_keypoints=0,
num_additional_channels=0,
load_multiclass_scores=False,
load_context_features=False,
expand_hierarchy_labels=False):
"""Constructor sets keys_to_features and items_to_handlers.
Args:
load_instance_masks: whether or not to load and handle instance masks.
instance_mask_type: type of instance masks. Options are provided in
input_reader.proto. This is only used if `load_instance_masks` is True.
label_map_proto_file: a file path to a
object_detection.protos.StringIntLabelMap proto. If provided, then the
mapped IDs of 'image/object/class/text' will take precedence over the
existing 'image/object/class/label' ID. Also, if provided, it is
assumed that 'image/object/class/text' will be in the data.
use_display_name: whether or not to use the `display_name` for label
mapping (instead of `name`). Only used if label_map_proto_file is
provided.
dct_method: An optional string. Defaults to None. It only takes
effect when image format is jpeg, used to specify a hint about the
algorithm used for jpeg decompression. Currently valid values
are ['INTEGER_FAST', 'INTEGER_ACCURATE']. The hint may be ignored, for
example, the jpeg library does not have that specific option.
num_keypoints: the number of keypoints per object.
num_additional_channels: how many additional channels to use.
load_multiclass_scores: Whether to load multiclass scores associated with
boxes.
load_context_features: Whether to load information from context_features,
to provide additional context to a detection model for training and/or
inference.
expand_hierarchy_labels: Expands the object and image labels taking into
account the provided hierarchy in the label_map_proto_file. For positive
classes, the labels are extended to ancestor. For negative classes,
the labels are expanded to descendants.
Raises:
ValueError: If `instance_mask_type` option is not one of
input_reader_pb2.DEFAULT, input_reader_pb2.NUMERICAL, or
input_reader_pb2.PNG_MASKS.
ValueError: If `expand_labels_hierarchy` is True, but the
`label_map_proto_file` is not provided.
"""
# TODO(rathodv): delete unused `use_display_name` argument once we change
# other decoders to handle label maps similarly.
del use_display_name
self.keys_to_features = {
'image/encoded':
tf.FixedLenFeature((), tf.string, default_value=''),
'image/format':
tf.FixedLenFeature((), tf.string, default_value='jpeg'),
'image/filename':
tf.FixedLenFeature((), tf.string, default_value=''),
'image/key/sha256':
tf.FixedLenFeature((), tf.string, default_value=''),
'image/source_id':
tf.FixedLenFeature((), tf.string, default_value=''),
'image/height':
tf.FixedLenFeature((), tf.int64, default_value=1),
'image/width':
tf.FixedLenFeature((), tf.int64, default_value=1),
# Image-level labels.
'image/class/text':
tf.VarLenFeature(tf.string),
'image/class/label':
tf.VarLenFeature(tf.int64),
'image/class/confidence':
tf.VarLenFeature(tf.float32),
# Object boxes and classes.
'image/object/bbox/xmin':
tf.VarLenFeature(tf.float32),
'image/object/bbox/xmax':
tf.VarLenFeature(tf.float32),
'image/object/bbox/ymin':
tf.VarLenFeature(tf.float32),
'image/object/bbox/ymax':
tf.VarLenFeature(tf.float32),
'image/object/class/label':
tf.VarLenFeature(tf.int64),
'image/object/class/text':
tf.VarLenFeature(tf.string),
'image/object/area':
tf.VarLenFeature(tf.float32),
'image/object/is_crowd':
tf.VarLenFeature(tf.int64),
'image/object/difficult':
tf.VarLenFeature(tf.int64),
'image/object/group_of':
tf.VarLenFeature(tf.int64),
'image/object/weight':
tf.VarLenFeature(tf.float32),
}
# We are checking `dct_method` instead of passing it directly in order to
# ensure TF version 1.6 compatibility.
if dct_method:
image = slim_example_decoder.Image(
image_key='image/encoded',
format_key='image/format',
channels=3,
dct_method=dct_method)
additional_channel_image = slim_example_decoder.Image(
image_key='image/additional_channels/encoded',
format_key='image/format',
channels=1,
repeated=True,
dct_method=dct_method)
else:
image = slim_example_decoder.Image(
image_key='image/encoded', format_key='image/format', channels=3)
additional_channel_image = slim_example_decoder.Image(
image_key='image/additional_channels/encoded',
format_key='image/format',
channels=1,
repeated=True)
self.items_to_handlers = {
fields.InputDataFields.image:
image,
fields.InputDataFields.source_id: (
slim_example_decoder.Tensor('image/source_id')),
fields.InputDataFields.key: (
slim_example_decoder.Tensor('image/key/sha256')),
fields.InputDataFields.filename: (
slim_example_decoder.Tensor('image/filename')),
# Image-level labels.
fields.InputDataFields.groundtruth_image_confidences: (
slim_example_decoder.Tensor('image/class/confidence')),
# Object boxes and classes.
fields.InputDataFields.groundtruth_boxes: (
slim_example_decoder.BoundingBox(['ymin', 'xmin', 'ymax', 'xmax'],
'image/object/bbox/')),
fields.InputDataFields.groundtruth_area:
slim_example_decoder.Tensor('image/object/area'),
fields.InputDataFields.groundtruth_is_crowd: (
slim_example_decoder.Tensor('image/object/is_crowd')),
fields.InputDataFields.groundtruth_difficult: (
slim_example_decoder.Tensor('image/object/difficult')),
fields.InputDataFields.groundtruth_group_of: (
slim_example_decoder.Tensor('image/object/group_of')),
fields.InputDataFields.groundtruth_weights: (
slim_example_decoder.Tensor('image/object/weight')),
}
if load_multiclass_scores:
self.keys_to_features[
'image/object/class/multiclass_scores'] = tf.VarLenFeature(tf.float32)
self.items_to_handlers[fields.InputDataFields.multiclass_scores] = (
slim_example_decoder.Tensor('image/object/class/multiclass_scores'))
if load_context_features:
self.keys_to_features[
'image/context_features'] = tf.VarLenFeature(tf.float32)
self.items_to_handlers[fields.InputDataFields.context_features] = (
slim_example_decoder.ItemHandlerCallback(
['image/context_features', 'image/context_feature_length'],
self._reshape_context_features))
self.keys_to_features[
'image/context_feature_length'] = tf.FixedLenFeature((), tf.int64)
self.items_to_handlers[fields.InputDataFields.context_feature_length] = (
slim_example_decoder.Tensor('image/context_feature_length'))
if num_additional_channels > 0:
self.keys_to_features[
'image/additional_channels/encoded'] = tf.FixedLenFeature(
(num_additional_channels,), tf.string)
self.items_to_handlers[
fields.InputDataFields.
image_additional_channels] = additional_channel_image
self._num_keypoints = num_keypoints
if num_keypoints > 0:
self.keys_to_features['image/object/keypoint/x'] = (
tf.VarLenFeature(tf.float32))
self.keys_to_features['image/object/keypoint/y'] = (
tf.VarLenFeature(tf.float32))
self.keys_to_features['image/object/keypoint/visibility'] = (
tf.VarLenFeature(tf.int64))
self.items_to_handlers[fields.InputDataFields.groundtruth_keypoints] = (
slim_example_decoder.ItemHandlerCallback(
['image/object/keypoint/y', 'image/object/keypoint/x'],
self._reshape_keypoints))
kpt_vis_field = fields.InputDataFields.groundtruth_keypoint_visibilities
self.items_to_handlers[kpt_vis_field] = (
slim_example_decoder.ItemHandlerCallback(
['image/object/keypoint/x', 'image/object/keypoint/visibility'],
self._reshape_keypoint_visibilities))
if load_instance_masks:
if instance_mask_type in (input_reader_pb2.DEFAULT,
input_reader_pb2.NUMERICAL_MASKS):
self.keys_to_features['image/object/mask'] = (
tf.VarLenFeature(tf.float32))
self.items_to_handlers[
fields.InputDataFields.groundtruth_instance_masks] = (
slim_example_decoder.ItemHandlerCallback(
['image/object/mask', 'image/height', 'image/width'],
self._reshape_instance_masks))
elif instance_mask_type == input_reader_pb2.PNG_MASKS:
self.keys_to_features['image/object/mask'] = tf.VarLenFeature(tf.string)
self.items_to_handlers[
fields.InputDataFields.groundtruth_instance_masks] = (
slim_example_decoder.ItemHandlerCallback(
['image/object/mask', 'image/height', 'image/width'],
self._decode_png_instance_masks))
else:
raise ValueError('Did not recognize the `instance_mask_type` option.')
if label_map_proto_file:
# If the label_map_proto is provided, try to use it in conjunction with
# the class text, and fall back to a materialized ID.
label_handler = _BackupHandler(
_ClassTensorHandler(
'image/object/class/text', label_map_proto_file,
default_value=''),
slim_example_decoder.Tensor('image/object/class/label'))
image_label_handler = _BackupHandler(
_ClassTensorHandler(
fields.TfExampleFields.image_class_text,
label_map_proto_file,
default_value=''),
slim_example_decoder.Tensor(fields.TfExampleFields.image_class_label))
else:
label_handler = slim_example_decoder.Tensor('image/object/class/label')
image_label_handler = slim_example_decoder.Tensor(
fields.TfExampleFields.image_class_label)
self.items_to_handlers[
fields.InputDataFields.groundtruth_classes] = label_handler
self.items_to_handlers[
fields.InputDataFields.groundtruth_image_classes] = image_label_handler
self._expand_hierarchy_labels = expand_hierarchy_labels
self._ancestors_lut = None
self._descendants_lut = None
if expand_hierarchy_labels:
if label_map_proto_file:
ancestors_lut, descendants_lut = (
label_map_util.get_label_map_hierarchy_lut(label_map_proto_file,
True))
self._ancestors_lut = tf.constant(ancestors_lut, dtype=tf.int64)
self._descendants_lut = tf.constant(descendants_lut, dtype=tf.int64)
else:
raise ValueError('In order to expand labels, the label_map_proto_file '
'has to be provided.')
def decode(self, tf_example_string_tensor):
"""Decodes serialized tensorflow example and returns a tensor dictionary.
Args:
tf_example_string_tensor: a string tensor holding a serialized tensorflow
example proto.
Returns:
A dictionary of the following tensors.
fields.InputDataFields.image - 3D uint8 tensor of shape [None, None, 3]
containing image.
fields.InputDataFields.original_image_spatial_shape - 1D int32 tensor of
shape [2] containing shape of the image.
fields.InputDataFields.source_id - string tensor containing original
image id.
fields.InputDataFields.key - string tensor with unique sha256 hash key.
fields.InputDataFields.filename - string tensor with original dataset
filename.
fields.InputDataFields.groundtruth_boxes - 2D float32 tensor of shape
[None, 4] containing box corners.
fields.InputDataFields.groundtruth_classes - 1D int64 tensor of shape
[None] containing classes for the boxes.
fields.InputDataFields.groundtruth_weights - 1D float32 tensor of
shape [None] indicating the weights of groundtruth boxes.
fields.InputDataFields.groundtruth_area - 1D float32 tensor of shape
[None] containing containing object mask area in pixel squared.
fields.InputDataFields.groundtruth_is_crowd - 1D bool tensor of shape
[None] indicating if the boxes enclose a crowd.
Optional:
fields.InputDataFields.groundtruth_image_confidences - 1D float tensor of
shape [None] indicating if a class is present in the image (1.0) or
a class is not present in the image (0.0).
fields.InputDataFields.image_additional_channels - 3D uint8 tensor of
shape [None, None, num_additional_channels]. 1st dim is height; 2nd dim
is width; 3rd dim is the number of additional channels.
fields.InputDataFields.groundtruth_difficult - 1D bool tensor of shape
[None] indicating if the boxes represent `difficult` instances.
fields.InputDataFields.groundtruth_group_of - 1D bool tensor of shape
[None] indicating if the boxes represent `group_of` instances.
fields.InputDataFields.groundtruth_keypoints - 3D float32 tensor of
shape [None, num_keypoints, 2] containing keypoints, where the
coordinates of the keypoints are ordered (y, x).
fields.InputDataFields.groundtruth_keypoint_visibilities - 2D bool
tensor of shape [None, num_keypoints] containing keypoint visibilites.
fields.InputDataFields.groundtruth_instance_masks - 3D float32 tensor of
shape [None, None, None] containing instance masks.
fields.InputDataFields.groundtruth_image_classes - 1D int64 of shape
[None] containing classes for the boxes.
fields.InputDataFields.multiclass_scores - 1D float32 tensor of shape
[None * num_classes] containing flattened multiclass scores for
groundtruth boxes.
fields.InputDataFields.context_features - 1D float32 tensor of shape
[context_feature_length * num_context_features]
fields.InputDataFields.context_feature_length - int32 tensor specifying
the length of each feature in context_features
"""
serialized_example = tf.reshape(tf_example_string_tensor, shape=[])
decoder = slim_example_decoder.TFExampleDecoder(self.keys_to_features,
self.items_to_handlers)
keys = decoder.list_items()
tensors = decoder.decode(serialized_example, items=keys)
tensor_dict = dict(zip(keys, tensors))
is_crowd = fields.InputDataFields.groundtruth_is_crowd
tensor_dict[is_crowd] = tf.cast(tensor_dict[is_crowd], dtype=tf.bool)
tensor_dict[fields.InputDataFields.image].set_shape([None, None, 3])
tensor_dict[fields.InputDataFields.original_image_spatial_shape] = tf.shape(
tensor_dict[fields.InputDataFields.image])[:2]
if fields.InputDataFields.image_additional_channels in tensor_dict:
channels = tensor_dict[fields.InputDataFields.image_additional_channels]
channels = tf.squeeze(channels, axis=3)
channels = tf.transpose(channels, perm=[1, 2, 0])
tensor_dict[fields.InputDataFields.image_additional_channels] = channels
def default_groundtruth_weights():
return tf.ones(
[tf.shape(tensor_dict[fields.InputDataFields.groundtruth_boxes])[0]],
dtype=tf.float32)
tensor_dict[fields.InputDataFields.groundtruth_weights] = tf.cond(
tf.greater(
tf.shape(
tensor_dict[fields.InputDataFields.groundtruth_weights])[0],
0), lambda: tensor_dict[fields.InputDataFields.groundtruth_weights],
default_groundtruth_weights)
if fields.InputDataFields.groundtruth_keypoints in tensor_dict:
# Set all keypoints that are not labeled to NaN.
gt_kpt_fld = fields.InputDataFields.groundtruth_keypoints
gt_kpt_vis_fld = fields.InputDataFields.groundtruth_keypoint_visibilities
visibilities_tiled = tf.tile(
tf.expand_dims(tensor_dict[gt_kpt_vis_fld], -1),
[1, 1, 2])
tensor_dict[gt_kpt_fld] = tf.where(
visibilities_tiled,
tensor_dict[gt_kpt_fld],
np.nan * tf.ones_like(tensor_dict[gt_kpt_fld]))
if self._expand_hierarchy_labels:
input_fields = fields.InputDataFields
image_classes, image_confidences = self._expand_image_label_hierarchy(
tensor_dict[input_fields.groundtruth_image_classes],
tensor_dict[input_fields.groundtruth_image_confidences])
tensor_dict[input_fields.groundtruth_image_classes] = image_classes
tensor_dict[input_fields.groundtruth_image_confidences] = (
image_confidences)
box_fields = [
fields.InputDataFields.groundtruth_group_of,
fields.InputDataFields.groundtruth_is_crowd,
fields.InputDataFields.groundtruth_difficult,
fields.InputDataFields.groundtruth_area,
fields.InputDataFields.groundtruth_boxes,
fields.InputDataFields.groundtruth_weights,
]
def expand_field(field_name):
return self._expansion_box_field_labels(
tensor_dict[input_fields.groundtruth_classes],
tensor_dict[field_name])
# pylint: disable=cell-var-from-loop
for field in box_fields:
if field in tensor_dict:
tensor_dict[field] = tf.cond(
tf.size(tensor_dict[field]) > 0, lambda: expand_field(field),
lambda: tensor_dict[field])
# pylint: enable=cell-var-from-loop
tensor_dict[input_fields.groundtruth_classes] = (
self._expansion_box_field_labels(
tensor_dict[input_fields.groundtruth_classes],
tensor_dict[input_fields.groundtruth_classes], True))
if fields.InputDataFields.groundtruth_group_of in tensor_dict:
group_of = fields.InputDataFields.groundtruth_group_of
tensor_dict[group_of] = tf.cast(tensor_dict[group_of], dtype=tf.bool)
return tensor_dict
def _reshape_keypoints(self, keys_to_tensors):
"""Reshape keypoints.
The keypoints are reshaped to [num_instances, num_keypoints, 2].
Args:
keys_to_tensors: a dictionary from keys to tensors. Expected keys are:
'image/object/keypoint/x'
'image/object/keypoint/y'
Returns:
A 3-D float tensor of shape [num_instances, num_keypoints, 2] with values
in [0, 1].
"""
y = keys_to_tensors['image/object/keypoint/y']
if isinstance(y, tf.SparseTensor):
y = tf.sparse_tensor_to_dense(y)
y = tf.expand_dims(y, 1)
x = keys_to_tensors['image/object/keypoint/x']
if isinstance(x, tf.SparseTensor):
x = tf.sparse_tensor_to_dense(x)
x = tf.expand_dims(x, 1)
keypoints = tf.concat([y, x], 1)
keypoints = tf.reshape(keypoints, [-1, self._num_keypoints, 2])
return keypoints
def _reshape_keypoint_visibilities(self, keys_to_tensors):
"""Reshape keypoint visibilities.
The keypoint visibilities are reshaped to [num_instances,
num_keypoints].
The raw keypoint visibilities are expected to conform to the
MSCoco definition. See Visibility enum.
The returned boolean is True for the labeled case (either
Visibility.NOT_VISIBLE or Visibility.VISIBLE). These are the same categories
that COCO uses to evaluate keypoint detection performance:
http://cocodataset.org/#keypoints-eval
If image/object/keypoint/visibility is not provided, visibilities will be
set to True for finite keypoint coordinate values, and 0 if the coordinates
are NaN.
Args:
keys_to_tensors: a dictionary from keys to tensors. Expected keys are:
'image/object/keypoint/x'
'image/object/keypoint/visibility'
Returns:
A 2-D bool tensor of shape [num_instances, num_keypoints] with values
in {0, 1}. 1 if the keypoint is labeled, 0 otherwise.
"""
x = keys_to_tensors['image/object/keypoint/x']
vis = keys_to_tensors['image/object/keypoint/visibility']
if isinstance(vis, tf.SparseTensor):
vis = tf.sparse_tensor_to_dense(vis)
if isinstance(x, tf.SparseTensor):
x = tf.sparse_tensor_to_dense(x)
default_vis = tf.where(
tf.math.is_nan(x),
Visibility.UNLABELED.value * tf.ones_like(x, dtype=tf.int64),
Visibility.VISIBLE.value * tf.ones_like(x, dtype=tf.int64))
# Use visibility if provided, otherwise use the default visibility.
vis = tf.cond(tf.equal(tf.size(x), tf.size(vis)),
true_fn=lambda: vis,
false_fn=lambda: default_vis)
vis = tf.math.logical_or(
tf.math.equal(vis, Visibility.NOT_VISIBLE.value),
tf.math.equal(vis, Visibility.VISIBLE.value))
vis = tf.reshape(vis, [-1, self._num_keypoints])
return vis
def _reshape_instance_masks(self, keys_to_tensors):
"""Reshape instance segmentation masks.
The instance segmentation masks are reshaped to [num_instances, height,
width].
Args:
keys_to_tensors: a dictionary from keys to tensors.
Returns:
A 3-D float tensor of shape [num_instances, height, width] with values
in {0, 1}.
"""
height = keys_to_tensors['image/height']
width = keys_to_tensors['image/width']
to_shape = tf.cast(tf.stack([-1, height, width]), tf.int32)
masks = keys_to_tensors['image/object/mask']
if isinstance(masks, tf.SparseTensor):
masks = tf.sparse_tensor_to_dense(masks)
masks = tf.reshape(
tf.cast(tf.greater(masks, 0.0), dtype=tf.float32), to_shape)
return tf.cast(masks, tf.float32)
def _reshape_context_features(self, keys_to_tensors):
"""Reshape context features.
The instance context_features are reshaped to
[num_context_features, context_feature_length]
Args:
keys_to_tensors: a dictionary from keys to tensors.
Returns:
A 2-D float tensor of shape [num_context_features, context_feature_length]
"""
context_feature_length = keys_to_tensors['image/context_feature_length']
to_shape = tf.cast(tf.stack([-1, context_feature_length]), tf.int32)
context_features = keys_to_tensors['image/context_features']
if isinstance(context_features, tf.SparseTensor):
context_features = tf.sparse_tensor_to_dense(context_features)
context_features = tf.reshape(context_features, to_shape)
return context_features
def _decode_png_instance_masks(self, keys_to_tensors):
"""Decode PNG instance segmentation masks and stack into dense tensor.
The instance segmentation masks are reshaped to [num_instances, height,
width].
Args:
keys_to_tensors: a dictionary from keys to tensors.
Returns:
A 3-D float tensor of shape [num_instances, height, width] with values
in {0, 1}.
"""
def decode_png_mask(image_buffer):
image = tf.squeeze(
tf.image.decode_image(image_buffer, channels=1), axis=2)
image.set_shape([None, None])
image = tf.cast(tf.greater(image, 0), dtype=tf.float32)
return image
png_masks = keys_to_tensors['image/object/mask']
height = keys_to_tensors['image/height']
width = keys_to_tensors['image/width']
if isinstance(png_masks, tf.SparseTensor):
png_masks = tf.sparse_tensor_to_dense(png_masks, default_value='')
return tf.cond(
tf.greater(tf.size(png_masks), 0),
lambda: tf.map_fn(decode_png_mask, png_masks, dtype=tf.float32),
lambda: tf.zeros(tf.cast(tf.stack([0, height, width]), dtype=tf.int32)))
def _expand_image_label_hierarchy(self, image_classes, image_confidences):
"""Expand image level labels according to the hierarchy.
Args:
image_classes: Int64 tensor with the image level class ids for a sample.
image_confidences: Float tensor signaling whether a class id is present in
the image (1.0) or not present (0.0).
Returns:
new_image_classes: Int64 tensor equal to expanding image_classes.
new_image_confidences: Float tensor equal to expanding image_confidences.
"""
def expand_labels(relation_tensor, confidence_value):
"""Expand to ancestors or descendants depending on arguments."""
mask = tf.equal(image_confidences, confidence_value)
target_image_classes = tf.boolean_mask(image_classes, mask)
expanded_indices = tf.reduce_any((tf.gather(
relation_tensor, target_image_classes - _LABEL_OFFSET, axis=0) > 0),
axis=0)
expanded_indices = tf.where(expanded_indices)[:, 0] + _LABEL_OFFSET
new_groundtruth_image_classes = (
tf.concat([
tf.boolean_mask(image_classes, tf.logical_not(mask)),
expanded_indices,
],
axis=0))
new_groundtruth_image_confidences = (
tf.concat([
tf.boolean_mask(image_confidences, tf.logical_not(mask)),
tf.ones([tf.shape(expanded_indices)[0]],
dtype=image_confidences.dtype) * confidence_value,
],
axis=0))
return new_groundtruth_image_classes, new_groundtruth_image_confidences
image_classes, image_confidences = expand_labels(self._ancestors_lut, 1.0)
new_image_classes, new_image_confidences = expand_labels(
self._descendants_lut, 0.0)
return new_image_classes, new_image_confidences
def _expansion_box_field_labels(self,
object_classes,
object_field,
copy_class_id=False):
"""Expand the labels of a specific object field according to the hierarchy.
Args:
object_classes: Int64 tensor with the class id for each element in
object_field.
object_field: Tensor to be expanded.
copy_class_id: Boolean to choose whether to use class id values in the
output tensor instead of replicating the original values.
Returns:
A tensor with the result of expanding object_field.
"""
expanded_indices = tf.gather(
self._ancestors_lut, object_classes - _LABEL_OFFSET, axis=0)
if copy_class_id:
new_object_field = tf.where(expanded_indices > 0)[:, 1] + _LABEL_OFFSET
else:
new_object_field = tf.repeat(
object_field, tf.reduce_sum(expanded_indices, axis=1), axis=0)
return new_object_field
|