Spaces:
Running
Running
File size: 7,791 Bytes
0b8359d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for post_processing_builder."""
import tensorflow.compat.v1 as tf
from google.protobuf import text_format
from object_detection.builders import post_processing_builder
from object_detection.protos import post_processing_pb2
from object_detection.utils import test_case
class PostProcessingBuilderTest(test_case.TestCase):
def test_build_non_max_suppressor_with_correct_parameters(self):
post_processing_text_proto = """
batch_non_max_suppression {
score_threshold: 0.7
iou_threshold: 0.6
max_detections_per_class: 100
max_total_detections: 300
soft_nms_sigma: 0.4
}
"""
post_processing_config = post_processing_pb2.PostProcessing()
text_format.Merge(post_processing_text_proto, post_processing_config)
non_max_suppressor, _ = post_processing_builder.build(
post_processing_config)
self.assertEqual(non_max_suppressor.keywords['max_size_per_class'], 100)
self.assertEqual(non_max_suppressor.keywords['max_total_size'], 300)
self.assertAlmostEqual(non_max_suppressor.keywords['score_thresh'], 0.7)
self.assertAlmostEqual(non_max_suppressor.keywords['iou_thresh'], 0.6)
self.assertAlmostEqual(non_max_suppressor.keywords['soft_nms_sigma'], 0.4)
def test_build_non_max_suppressor_with_correct_parameters_classagnostic_nms(
self):
post_processing_text_proto = """
batch_non_max_suppression {
score_threshold: 0.7
iou_threshold: 0.6
max_detections_per_class: 10
max_total_detections: 300
use_class_agnostic_nms: True
max_classes_per_detection: 1
}
"""
post_processing_config = post_processing_pb2.PostProcessing()
text_format.Merge(post_processing_text_proto, post_processing_config)
non_max_suppressor, _ = post_processing_builder.build(
post_processing_config)
self.assertEqual(non_max_suppressor.keywords['max_size_per_class'], 10)
self.assertEqual(non_max_suppressor.keywords['max_total_size'], 300)
self.assertEqual(non_max_suppressor.keywords['max_classes_per_detection'],
1)
self.assertEqual(non_max_suppressor.keywords['use_class_agnostic_nms'],
True)
self.assertAlmostEqual(non_max_suppressor.keywords['score_thresh'], 0.7)
self.assertAlmostEqual(non_max_suppressor.keywords['iou_thresh'], 0.6)
def test_build_identity_score_converter(self):
post_processing_text_proto = """
score_converter: IDENTITY
"""
post_processing_config = post_processing_pb2.PostProcessing()
text_format.Merge(post_processing_text_proto, post_processing_config)
_, score_converter = post_processing_builder.build(
post_processing_config)
self.assertEqual(score_converter.__name__, 'identity_with_logit_scale')
def graph_fn():
inputs = tf.constant([1, 1], tf.float32)
outputs = score_converter(inputs)
return outputs
converted_scores = self.execute_cpu(graph_fn, [])
self.assertAllClose(converted_scores, [1, 1])
def test_build_identity_score_converter_with_logit_scale(self):
post_processing_text_proto = """
score_converter: IDENTITY
logit_scale: 2.0
"""
post_processing_config = post_processing_pb2.PostProcessing()
text_format.Merge(post_processing_text_proto, post_processing_config)
_, score_converter = post_processing_builder.build(post_processing_config)
self.assertEqual(score_converter.__name__, 'identity_with_logit_scale')
def graph_fn():
inputs = tf.constant([1, 1], tf.float32)
outputs = score_converter(inputs)
return outputs
converted_scores = self.execute_cpu(graph_fn, [])
self.assertAllClose(converted_scores, [.5, .5])
def test_build_sigmoid_score_converter(self):
post_processing_text_proto = """
score_converter: SIGMOID
"""
post_processing_config = post_processing_pb2.PostProcessing()
text_format.Merge(post_processing_text_proto, post_processing_config)
_, score_converter = post_processing_builder.build(post_processing_config)
self.assertEqual(score_converter.__name__, 'sigmoid_with_logit_scale')
def test_build_softmax_score_converter(self):
post_processing_text_proto = """
score_converter: SOFTMAX
"""
post_processing_config = post_processing_pb2.PostProcessing()
text_format.Merge(post_processing_text_proto, post_processing_config)
_, score_converter = post_processing_builder.build(post_processing_config)
self.assertEqual(score_converter.__name__, 'softmax_with_logit_scale')
def test_build_softmax_score_converter_with_temperature(self):
post_processing_text_proto = """
score_converter: SOFTMAX
logit_scale: 2.0
"""
post_processing_config = post_processing_pb2.PostProcessing()
text_format.Merge(post_processing_text_proto, post_processing_config)
_, score_converter = post_processing_builder.build(post_processing_config)
self.assertEqual(score_converter.__name__, 'softmax_with_logit_scale')
def test_build_calibrator_with_nonempty_config(self):
"""Test that identity function used when no calibration_config specified."""
# Calibration config maps all scores to 0.5.
post_processing_text_proto = """
score_converter: SOFTMAX
calibration_config {
function_approximation {
x_y_pairs {
x_y_pair {
x: 0.0
y: 0.5
}
x_y_pair {
x: 1.0
y: 0.5
}}}}"""
post_processing_config = post_processing_pb2.PostProcessing()
text_format.Merge(post_processing_text_proto, post_processing_config)
_, calibrated_score_conversion_fn = post_processing_builder.build(
post_processing_config)
self.assertEqual(calibrated_score_conversion_fn.__name__,
'calibrate_with_function_approximation')
def graph_fn():
input_scores = tf.constant([1, 1], tf.float32)
outputs = calibrated_score_conversion_fn(input_scores)
return outputs
calibrated_scores = self.execute_cpu(graph_fn, [])
self.assertAllClose(calibrated_scores, [0.5, 0.5])
def test_build_temperature_scaling_calibrator(self):
post_processing_text_proto = """
score_converter: SOFTMAX
calibration_config {
temperature_scaling_calibration {
scaler: 2.0
}}"""
post_processing_config = post_processing_pb2.PostProcessing()
text_format.Merge(post_processing_text_proto, post_processing_config)
_, calibrated_score_conversion_fn = post_processing_builder.build(
post_processing_config)
self.assertEqual(calibrated_score_conversion_fn.__name__,
'calibrate_with_temperature_scaling_calibration')
def graph_fn():
input_scores = tf.constant([1, 1], tf.float32)
outputs = calibrated_score_conversion_fn(input_scores)
return outputs
calibrated_scores = self.execute_cpu(graph_fn, [])
self.assertAllClose(calibrated_scores, [0.5, 0.5])
if __name__ == '__main__':
tf.test.main()
|