Spaces:
Running
Running
File size: 2,220 Bytes
0b8359d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
# Lint as: python2, python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for model_builder under TensorFlow 1.X."""
import unittest
from absl.testing import parameterized
import tensorflow.compat.v1 as tf
from object_detection.builders import model_builder
from object_detection.builders import model_builder_test
from object_detection.meta_architectures import context_rcnn_meta_arch
from object_detection.meta_architectures import ssd_meta_arch
from object_detection.protos import losses_pb2
from object_detection.utils import tf_version
@unittest.skipIf(tf_version.is_tf2(), 'Skipping TF1.X only test.')
class ModelBuilderTF1Test(model_builder_test.ModelBuilderTest):
def default_ssd_feature_extractor(self):
return 'ssd_resnet50_v1_fpn'
def default_faster_rcnn_feature_extractor(self):
return 'faster_rcnn_resnet101'
def ssd_feature_extractors(self):
return model_builder.SSD_FEATURE_EXTRACTOR_CLASS_MAP
def faster_rcnn_feature_extractors(self):
return model_builder.FASTER_RCNN_FEATURE_EXTRACTOR_CLASS_MAP
@parameterized.parameters(True, False)
def test_create_context_rcnn_from_config_with_params(self, is_training):
model_proto = self.create_default_faster_rcnn_model_proto()
model_proto.faster_rcnn.context_config.attention_bottleneck_dimension = 10
model_proto.faster_rcnn.context_config.attention_temperature = 0.5
model = model_builder.build(model_proto, is_training=is_training)
self.assertIsInstance(model, context_rcnn_meta_arch.ContextRCNNMetaArch)
if __name__ == '__main__':
tf.test.main()
|