Spaces:
Running
Running
File size: 23,503 Bytes
0b8359d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 |
# Lint as: python2, python3
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for dataset_builder."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import numpy as np
from six.moves import range
import tensorflow.compat.v1 as tf
from google.protobuf import text_format
from object_detection.builders import dataset_builder
from object_detection.core import standard_fields as fields
from object_detection.dataset_tools import seq_example_util
from object_detection.protos import input_reader_pb2
from object_detection.utils import dataset_util
from object_detection.utils import test_case
# pylint: disable=g-import-not-at-top
try:
from tensorflow.contrib import lookup as contrib_lookup
except ImportError:
# TF 2.0 doesn't ship with contrib.
pass
# pylint: enable=g-import-not-at-top
def get_iterator_next_for_testing(dataset, is_tf2):
iterator = dataset.make_initializable_iterator()
if not is_tf2:
tf.add_to_collection(tf.GraphKeys.TABLE_INITIALIZERS, iterator.initializer)
return iterator.get_next()
def _get_labelmap_path():
"""Returns an absolute path to label map file."""
parent_path = os.path.dirname(tf.resource_loader.get_data_files_path())
return os.path.join(parent_path, 'data',
'pet_label_map.pbtxt')
class DatasetBuilderTest(test_case.TestCase):
def create_tf_record(self, has_additional_channels=False, num_shards=1,
num_examples_per_shard=1):
def dummy_jpeg_fn():
image_tensor = np.random.randint(255, size=(4, 5, 3)).astype(np.uint8)
additional_channels_tensor = np.random.randint(
255, size=(4, 5, 1)).astype(np.uint8)
encoded_jpeg = tf.image.encode_jpeg(image_tensor)
encoded_additional_channels_jpeg = tf.image.encode_jpeg(
additional_channels_tensor)
return encoded_jpeg, encoded_additional_channels_jpeg
encoded_jpeg, encoded_additional_channels_jpeg = self.execute(
dummy_jpeg_fn, [])
tmp_dir = self.get_temp_dir()
flat_mask = (4 * 5) * [1.0]
for i in range(num_shards):
path = os.path.join(tmp_dir, '%05d.tfrecord' % i)
writer = tf.python_io.TFRecordWriter(path)
for j in range(num_examples_per_shard):
if num_shards > 1:
source_id = (str(i) + '_' + str(j)).encode()
else:
source_id = str(j).encode()
features = {
'image/source_id': dataset_util.bytes_feature(source_id),
'image/encoded': dataset_util.bytes_feature(encoded_jpeg),
'image/format': dataset_util.bytes_feature('jpeg'.encode('utf8')),
'image/height': dataset_util.int64_feature(4),
'image/width': dataset_util.int64_feature(5),
'image/object/bbox/xmin': dataset_util.float_list_feature([0.0]),
'image/object/bbox/xmax': dataset_util.float_list_feature([1.0]),
'image/object/bbox/ymin': dataset_util.float_list_feature([0.0]),
'image/object/bbox/ymax': dataset_util.float_list_feature([1.0]),
'image/object/class/label': dataset_util.int64_list_feature([2]),
'image/object/mask': dataset_util.float_list_feature(flat_mask),
}
if has_additional_channels:
additional_channels_key = 'image/additional_channels/encoded'
features[additional_channels_key] = dataset_util.bytes_list_feature(
[encoded_additional_channels_jpeg] * 2)
example = tf.train.Example(features=tf.train.Features(feature=features))
writer.write(example.SerializeToString())
writer.close()
return os.path.join(self.get_temp_dir(), '?????.tfrecord')
def _make_random_serialized_jpeg_images(self, num_frames, image_height,
image_width):
def graph_fn():
images = tf.cast(tf.random.uniform(
[num_frames, image_height, image_width, 3],
maxval=256,
dtype=tf.int32), dtype=tf.uint8)
images_list = tf.unstack(images, axis=0)
encoded_images_list = [tf.io.encode_jpeg(image) for image in images_list]
return encoded_images_list
encoded_images = self.execute(graph_fn, [])
return encoded_images
def create_tf_record_sequence_example(self):
path = os.path.join(self.get_temp_dir(), 'seq_tfrecord')
writer = tf.python_io.TFRecordWriter(path)
num_frames = 4
image_height = 4
image_width = 5
image_source_ids = [str(i) for i in range(num_frames)]
with self.test_session():
encoded_images = self._make_random_serialized_jpeg_images(
num_frames, image_height, image_width)
sequence_example_serialized = seq_example_util.make_sequence_example(
dataset_name='video_dataset',
video_id='video',
encoded_images=encoded_images,
image_height=image_height,
image_width=image_width,
image_source_ids=image_source_ids,
image_format='JPEG',
is_annotated=[[1], [1], [1], [1]],
bboxes=[
[[]], # Frame 0.
[[0., 0., 1., 1.]], # Frame 1.
[[0., 0., 1., 1.],
[0.1, 0.1, 0.2, 0.2]], # Frame 2.
[[]], # Frame 3.
],
label_strings=[
[], # Frame 0.
['Abyssinian'], # Frame 1.
['Abyssinian', 'american_bulldog'], # Frame 2.
[], # Frame 3
]).SerializeToString()
writer.write(sequence_example_serialized)
writer.close()
return path
def test_build_tf_record_input_reader(self):
tf_record_path = self.create_tf_record()
input_reader_text_proto = """
shuffle: false
num_readers: 1
tf_record_input_reader {{
input_path: '{0}'
}}
""".format(tf_record_path)
input_reader_proto = input_reader_pb2.InputReader()
text_format.Merge(input_reader_text_proto, input_reader_proto)
def graph_fn():
return get_iterator_next_for_testing(
dataset_builder.build(input_reader_proto, batch_size=1),
self.is_tf2())
output_dict = self.execute(graph_fn, [])
self.assertNotIn(
fields.InputDataFields.groundtruth_instance_masks, output_dict)
self.assertEqual((1, 4, 5, 3),
output_dict[fields.InputDataFields.image].shape)
self.assertAllEqual([[2]],
output_dict[fields.InputDataFields.groundtruth_classes])
self.assertEqual(
(1, 1, 4), output_dict[fields.InputDataFields.groundtruth_boxes].shape)
self.assertAllEqual(
[0.0, 0.0, 1.0, 1.0],
output_dict[fields.InputDataFields.groundtruth_boxes][0][0])
def get_mock_reduce_to_frame_fn(self):
def mock_reduce_to_frame_fn(dataset, dataset_map_fn, batch_size, config):
def get_frame(tensor_dict):
out_tensor_dict = {}
out_tensor_dict[fields.InputDataFields.source_id] = (
tensor_dict[fields.InputDataFields.source_id][0])
return out_tensor_dict
return dataset_map_fn(dataset, get_frame, batch_size, config)
return mock_reduce_to_frame_fn
def test_build_tf_record_input_reader_sequence_example_train(self):
tf_record_path = self.create_tf_record_sequence_example()
label_map_path = _get_labelmap_path()
input_type = 'TF_SEQUENCE_EXAMPLE'
input_reader_text_proto = """
shuffle: false
num_readers: 1
input_type: {1}
tf_record_input_reader {{
input_path: '{0}'
}}
""".format(tf_record_path, input_type)
input_reader_proto = input_reader_pb2.InputReader()
input_reader_proto.label_map_path = label_map_path
text_format.Merge(input_reader_text_proto, input_reader_proto)
reduce_to_frame_fn = self.get_mock_reduce_to_frame_fn()
def graph_fn():
return get_iterator_next_for_testing(
dataset_builder.build(input_reader_proto, batch_size=1,
reduce_to_frame_fn=reduce_to_frame_fn),
self.is_tf2())
output_dict = self.execute(graph_fn, [])
self.assertEqual((1,),
output_dict[fields.InputDataFields.source_id].shape)
def test_build_tf_record_input_reader_sequence_example_test(self):
tf_record_path = self.create_tf_record_sequence_example()
input_type = 'TF_SEQUENCE_EXAMPLE'
label_map_path = _get_labelmap_path()
input_reader_text_proto = """
shuffle: false
num_readers: 1
input_type: {1}
tf_record_input_reader {{
input_path: '{0}'
}}
""".format(tf_record_path, input_type)
input_reader_proto = input_reader_pb2.InputReader()
text_format.Merge(input_reader_text_proto, input_reader_proto)
input_reader_proto.label_map_path = label_map_path
reduce_to_frame_fn = self.get_mock_reduce_to_frame_fn()
def graph_fn():
return get_iterator_next_for_testing(
dataset_builder.build(input_reader_proto, batch_size=1,
reduce_to_frame_fn=reduce_to_frame_fn),
self.is_tf2())
output_dict = self.execute(graph_fn, [])
self.assertEqual((1,),
output_dict[fields.InputDataFields.source_id].shape)
def test_build_tf_record_input_reader_and_load_instance_masks(self):
tf_record_path = self.create_tf_record()
input_reader_text_proto = """
shuffle: false
num_readers: 1
load_instance_masks: true
tf_record_input_reader {{
input_path: '{0}'
}}
""".format(tf_record_path)
input_reader_proto = input_reader_pb2.InputReader()
text_format.Merge(input_reader_text_proto, input_reader_proto)
def graph_fn():
return get_iterator_next_for_testing(
dataset_builder.build(input_reader_proto, batch_size=1),
self.is_tf2()
)
output_dict = self.execute(graph_fn, [])
self.assertAllEqual(
(1, 1, 4, 5),
output_dict[fields.InputDataFields.groundtruth_instance_masks].shape)
def test_build_tf_record_input_reader_with_batch_size_two(self):
tf_record_path = self.create_tf_record()
input_reader_text_proto = """
shuffle: false
num_readers: 1
tf_record_input_reader {{
input_path: '{0}'
}}
""".format(tf_record_path)
input_reader_proto = input_reader_pb2.InputReader()
text_format.Merge(input_reader_text_proto, input_reader_proto)
def one_hot_class_encoding_fn(tensor_dict):
tensor_dict[fields.InputDataFields.groundtruth_classes] = tf.one_hot(
tensor_dict[fields.InputDataFields.groundtruth_classes] - 1, depth=3)
return tensor_dict
def graph_fn():
return dataset_builder.make_initializable_iterator(
dataset_builder.build(
input_reader_proto,
transform_input_data_fn=one_hot_class_encoding_fn,
batch_size=2)).get_next()
output_dict = self.execute(graph_fn, [])
self.assertAllEqual([2, 4, 5, 3],
output_dict[fields.InputDataFields.image].shape)
self.assertAllEqual(
[2, 1, 3],
output_dict[fields.InputDataFields.groundtruth_classes].shape)
self.assertAllEqual(
[2, 1, 4], output_dict[fields.InputDataFields.groundtruth_boxes].shape)
self.assertAllEqual([[[0.0, 0.0, 1.0, 1.0]], [[0.0, 0.0, 1.0, 1.0]]],
output_dict[fields.InputDataFields.groundtruth_boxes])
def test_build_tf_record_input_reader_with_batch_size_two_and_masks(self):
tf_record_path = self.create_tf_record()
input_reader_text_proto = """
shuffle: false
num_readers: 1
load_instance_masks: true
tf_record_input_reader {{
input_path: '{0}'
}}
""".format(tf_record_path)
input_reader_proto = input_reader_pb2.InputReader()
text_format.Merge(input_reader_text_proto, input_reader_proto)
def one_hot_class_encoding_fn(tensor_dict):
tensor_dict[fields.InputDataFields.groundtruth_classes] = tf.one_hot(
tensor_dict[fields.InputDataFields.groundtruth_classes] - 1, depth=3)
return tensor_dict
def graph_fn():
return dataset_builder.make_initializable_iterator(
dataset_builder.build(
input_reader_proto,
transform_input_data_fn=one_hot_class_encoding_fn,
batch_size=2)).get_next()
output_dict = self.execute(graph_fn, [])
self.assertAllEqual(
[2, 1, 4, 5],
output_dict[fields.InputDataFields.groundtruth_instance_masks].shape)
def test_raises_error_with_no_input_paths(self):
input_reader_text_proto = """
shuffle: false
num_readers: 1
load_instance_masks: true
"""
input_reader_proto = input_reader_pb2.InputReader()
text_format.Merge(input_reader_text_proto, input_reader_proto)
with self.assertRaises(ValueError):
dataset_builder.build(input_reader_proto, batch_size=1)
def test_sample_all_data(self):
tf_record_path = self.create_tf_record(num_examples_per_shard=2)
input_reader_text_proto = """
shuffle: false
num_readers: 1
sample_1_of_n_examples: 1
tf_record_input_reader {{
input_path: '{0}'
}}
""".format(tf_record_path)
input_reader_proto = input_reader_pb2.InputReader()
text_format.Merge(input_reader_text_proto, input_reader_proto)
def graph_fn():
dataset = dataset_builder.build(input_reader_proto, batch_size=1)
sample1_ds = dataset.take(1)
sample2_ds = dataset.skip(1)
iter1 = dataset_builder.make_initializable_iterator(sample1_ds)
iter2 = dataset_builder.make_initializable_iterator(sample2_ds)
return iter1.get_next(), iter2.get_next()
output_dict1, output_dict2 = self.execute(graph_fn, [])
self.assertAllEqual(['0'], output_dict1[fields.InputDataFields.source_id])
self.assertEqual([b'1'], output_dict2[fields.InputDataFields.source_id])
def test_sample_one_of_n_shards(self):
tf_record_path = self.create_tf_record(num_examples_per_shard=4)
input_reader_text_proto = """
shuffle: false
num_readers: 1
sample_1_of_n_examples: 2
tf_record_input_reader {{
input_path: '{0}'
}}
""".format(tf_record_path)
input_reader_proto = input_reader_pb2.InputReader()
text_format.Merge(input_reader_text_proto, input_reader_proto)
def graph_fn():
dataset = dataset_builder.build(input_reader_proto, batch_size=1)
sample1_ds = dataset.take(1)
sample2_ds = dataset.skip(1)
iter1 = dataset_builder.make_initializable_iterator(sample1_ds)
iter2 = dataset_builder.make_initializable_iterator(sample2_ds)
return iter1.get_next(), iter2.get_next()
output_dict1, output_dict2 = self.execute(graph_fn, [])
self.assertAllEqual([b'0'], output_dict1[fields.InputDataFields.source_id])
self.assertEqual([b'2'], output_dict2[fields.InputDataFields.source_id])
def test_no_input_context(self):
"""Test that all samples are read with no input context given."""
tf_record_path = self.create_tf_record(num_examples_per_shard=16,
num_shards=2)
input_reader_text_proto = """
shuffle: false
num_readers: 1
num_epochs: 1
tf_record_input_reader {{
input_path: '{0}'
}}
""".format(tf_record_path)
input_reader_proto = input_reader_pb2.InputReader()
text_format.Merge(input_reader_text_proto, input_reader_proto)
for i in range(4):
# pylint:disable=cell-var-from-loop
def graph_fn():
dataset = dataset_builder.build(input_reader_proto, batch_size=8)
dataset = dataset.skip(i)
return get_iterator_next_for_testing(dataset, self.is_tf2())
batch = self.execute(graph_fn, [])
self.assertEqual(batch['image'].shape, (8, 4, 5, 3))
def graph_fn_last_batch():
dataset = dataset_builder.build(input_reader_proto, batch_size=8)
dataset = dataset.skip(4)
return get_iterator_next_for_testing(dataset, self.is_tf2())
self.assertRaises(tf.errors.OutOfRangeError, self.execute,
compute_fn=graph_fn_last_batch, inputs=[])
def test_with_input_context(self):
"""Test that a subset is read with input context given."""
tf_record_path = self.create_tf_record(num_examples_per_shard=16,
num_shards=2)
input_reader_text_proto = """
shuffle: false
num_readers: 1
num_epochs: 1
tf_record_input_reader {{
input_path: '{0}'
}}
""".format(tf_record_path)
input_reader_proto = input_reader_pb2.InputReader()
text_format.Merge(input_reader_text_proto, input_reader_proto)
input_context = tf.distribute.InputContext(
num_input_pipelines=2, input_pipeline_id=0, num_replicas_in_sync=4
)
for i in range(8):
# pylint:disable=cell-var-from-loop
def graph_fn():
dataset = dataset_builder.build(input_reader_proto, batch_size=8,
input_context=input_context)
dataset = dataset.skip(i)
return get_iterator_next_for_testing(dataset, self.is_tf2())
batch = self.execute(graph_fn, [])
self.assertEqual(batch['image'].shape, (2, 4, 5, 3))
def graph_fn_last_batch():
dataset = dataset_builder.build(input_reader_proto, batch_size=8,
input_context=input_context)
dataset = dataset.skip(8)
return get_iterator_next_for_testing(dataset, self.is_tf2())
self.assertRaises(tf.errors.OutOfRangeError, self.execute,
compute_fn=graph_fn_last_batch, inputs=[])
class ReadDatasetTest(test_case.TestCase):
def setUp(self):
self._path_template = os.path.join(self.get_temp_dir(), 'examples_%s.txt')
for i in range(5):
path = self._path_template % i
with tf.gfile.Open(path, 'wb') as f:
f.write('\n'.join([str(i + 1), str((i + 1) * 10)]))
self._shuffle_path_template = os.path.join(self.get_temp_dir(),
'shuffle_%s.txt')
for i in range(2):
path = self._shuffle_path_template % i
with tf.gfile.Open(path, 'wb') as f:
f.write('\n'.join([str(i)] * 5))
super(ReadDatasetTest, self).setUp()
def _get_dataset_next(self, files, config, batch_size, num_batches_skip=0):
def decode_func(value):
return [tf.string_to_number(value, out_type=tf.int32)]
dataset = dataset_builder.read_dataset(tf.data.TextLineDataset, files,
config)
dataset = dataset.map(decode_func)
dataset = dataset.batch(batch_size)
if num_batches_skip > 0:
dataset = dataset.skip(num_batches_skip)
return get_iterator_next_for_testing(dataset, self.is_tf2())
def test_make_initializable_iterator_with_hashTable(self):
def graph_fn():
keys = [1, 0, -1]
dataset = tf.data.Dataset.from_tensor_slices([[1, 2, -1, 5]])
try:
# Dynamically try to load the tf v2 lookup, falling back to contrib
lookup = tf.compat.v2.lookup
hash_table_class = tf.compat.v2.lookup.StaticHashTable
except AttributeError:
lookup = contrib_lookup
hash_table_class = contrib_lookup.HashTable
table = hash_table_class(
initializer=lookup.KeyValueTensorInitializer(
keys=keys, values=list(reversed(keys))),
default_value=100)
dataset = dataset.map(table.lookup)
return dataset_builder.make_initializable_iterator(dataset).get_next()
result = self.execute(graph_fn, [])
self.assertAllEqual(result, [-1, 100, 1, 100])
def test_read_dataset(self):
config = input_reader_pb2.InputReader()
config.num_readers = 1
config.shuffle = False
def graph_fn():
return self._get_dataset_next(
[self._path_template % '*'], config, batch_size=20)
data = self.execute(graph_fn, [])
# Note that the execute function extracts single outputs if the return
# value is of size 1.
self.assertCountEqual(
data, [
1, 10, 2, 20, 3, 30, 4, 40, 5, 50, 1, 10, 2, 20, 3, 30, 4, 40, 5,
50
])
def test_reduce_num_reader(self):
config = input_reader_pb2.InputReader()
config.num_readers = 10
config.shuffle = False
def graph_fn():
return self._get_dataset_next(
[self._path_template % '*'], config, batch_size=20)
data = self.execute(graph_fn, [])
# Note that the execute function extracts single outputs if the return
# value is of size 1.
self.assertCountEqual(
data, [
1, 10, 2, 20, 3, 30, 4, 40, 5, 50, 1, 10, 2, 20, 3, 30, 4, 40, 5,
50
])
def test_enable_shuffle(self):
config = input_reader_pb2.InputReader()
config.num_readers = 1
config.shuffle = True
tf.set_random_seed(1) # Set graph level seed.
def graph_fn():
return self._get_dataset_next(
[self._shuffle_path_template % '*'], config, batch_size=10)
expected_non_shuffle_output = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1]
data = self.execute(graph_fn, [])
self.assertTrue(
np.any(np.not_equal(data, expected_non_shuffle_output)))
def test_disable_shuffle_(self):
config = input_reader_pb2.InputReader()
config.num_readers = 1
config.shuffle = False
def graph_fn():
return self._get_dataset_next(
[self._shuffle_path_template % '*'], config, batch_size=10)
expected_non_shuffle_output1 = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1]
expected_non_shuffle_output2 = [1, 1, 1, 1, 1, 0, 0, 0, 0, 0]
# Note that the execute function extracts single outputs if the return
# value is of size 1.
data = self.execute(graph_fn, [])
self.assertTrue(all(data == expected_non_shuffle_output1) or
all(data == expected_non_shuffle_output2))
def test_read_dataset_single_epoch(self):
config = input_reader_pb2.InputReader()
config.num_epochs = 1
config.num_readers = 1
config.shuffle = False
def graph_fn():
return self._get_dataset_next(
[self._path_template % '0'], config, batch_size=30)
data = self.execute(graph_fn, [])
# Note that the execute function extracts single outputs if the return
# value is of size 1.
self.assertAllEqual(data, [1, 10])
# First batch will retrieve as much as it can, second batch will fail.
def graph_fn_second_batch():
return self._get_dataset_next(
[self._path_template % '0'], config, batch_size=30,
num_batches_skip=1)
self.assertRaises(tf.errors.OutOfRangeError, self.execute,
compute_fn=graph_fn_second_batch, inputs=[])
if __name__ == '__main__':
tf.test.main()
|