File size: 22,161 Bytes
0b8359d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

#include "utils/ssd_utils.h"

#include <math.h>

#include <cmath>

#include <glog/logging.h>
#include "absl/strings/str_cat.h"

namespace lstm_object_detection {
namespace tflite {
namespace {
using protos::AnchorGenerationOptions;
using protos::BoxCornerEncoding;
using protos::BoxCornerOffsetCoder;
using protos::CenterSizeEncoding;
using protos::CenterSizeOffsetCoder;
using protos::DetectionResults;

void DecreasingArgSort(const std::vector<float>& values,
                       std::vector<int>* indices) {
  indices->resize(values.size());
  for (int i = 0; i < values.size(); ++i) (*indices)[i] = i;
  std::sort(
      indices->begin(), indices->end(),
      [&values](const int i, const int j) { return values[i] > values[j]; });
}

void DecreasingPartialArgSort(const float* values, int num_values,
                              int num_to_sort, int* indices) {
  for (int i = 0; i < num_values; ++i) {
    indices[i] = i;
  }
  std::partial_sort(
      indices, indices + num_to_sort, indices + num_values,
      [&values](const int i, const int j) { return values[i] > values[j]; });
}

// The row index offset is 1 if background class is included and 0 otherwise.
int GetLabelOffset(const int num_boxes,
                   const int num_classes,
                   const int score_size) {
  const int label_offset = score_size / num_boxes - num_classes;
  CHECK_EQ(score_size, (num_classes + label_offset) * num_boxes);
  return label_offset;
}

void ApplyThreshold(const std::vector<float>& values,
                    const float threshold,
                    std::vector<float>* keep_values,
                    std::vector<int>* keep_indices) {
  for (int i = 0; i < values.size(); i++) {
    if (values[i] >= threshold) {
      keep_values->emplace_back(values[i]);
      keep_indices->emplace_back(i);
    }
  }
}

void ValidateBoxes(const BoxCornerEncoding& boxes) {
  const int num_boxes = boxes.ymin_size();
  CHECK_EQ(num_boxes, boxes.ymax_size());
  CHECK_EQ(num_boxes, boxes.xmin_size());
  CHECK_EQ(num_boxes, boxes.xmax_size());

  for (int i = 0; i < num_boxes; ++i) {
    CHECK_GE(boxes.ymax(i), boxes.ymin(i));
    CHECK_GE(boxes.xmax(i), boxes.xmin(i));
  }
}
}  // namespace


void DecodeBoxCornerBoxes(const BoxCornerEncoding& predictions,
                          const CenterSizeEncoding& anchors,
                          const BoxCornerOffsetCoder& coder,
                          BoxCornerEncoding* decoded_boxes) {
  const int num_boxes = predictions.ymin_size();
  CHECK_EQ(num_boxes, anchors.y_size());
  CHECK_EQ(predictions.keypoint_y_size(), 0)
      << "BoxCornerOffsetCoder doesn't work with keypoints.";

  float ymin, xmin, ymax, xmax;
  for (int i = 0; i < num_boxes; ++i) {
    ymin = predictions.ymin(i) * coder.stddev() +
           (anchors.y(i) - anchors.h(i) / 2);
    xmin = predictions.xmin(i) * coder.stddev() +
           (anchors.x(i) - anchors.w(i) / 2);
    ymax = predictions.ymax(i) * coder.stddev() +
           (anchors.y(i) + anchors.h(i) / 2);
    xmax = predictions.xmax(i) * coder.stddev() +
           (anchors.x(i) + anchors.w(i) / 2);

    decoded_boxes->add_ymin(ymin);
    decoded_boxes->add_xmin(xmin);
    decoded_boxes->add_ymax(std::max(ymax, ymin));
    decoded_boxes->add_xmax(std::max(xmax, xmin));
  }
}

void DecodeCenterSizeBoxes(const CenterSizeEncoding& predictions,
                           const CenterSizeEncoding& anchors,
                           const CenterSizeOffsetCoder& coder,
                           BoxCornerEncoding* decoded_boxes) {
  CHECK_EQ(predictions.y_size(), anchors.y_size());
  const int num_boxes = predictions.y_size();
  const int num_keypoints = predictions.keypoint_y_size() / num_boxes;
  float ycenter, xcenter, h, w, ymin, xmin, ymax, xmax;
  for (int i = 0; i < num_boxes; ++i) {
    ycenter = predictions.y(i) / coder.y_scale() * anchors.h(i) + anchors.y(i);
    xcenter = predictions.x(i) / coder.x_scale() * anchors.w(i) + anchors.x(i);
    h = std::exp(predictions.h(i) / coder.h_scale()) * anchors.h(i);
    w = std::exp(predictions.w(i) / coder.w_scale()) * anchors.w(i);

    ymin = ycenter - h / 2.;
    xmin = xcenter - w / 2.;
    ymax = ycenter + h / 2.;
    xmax = xcenter + w / 2.;

    decoded_boxes->add_ymin(ymin);
    decoded_boxes->add_xmin(xmin);
    decoded_boxes->add_ymax(ymax);
    decoded_boxes->add_xmax(xmax);

    // keypoints
    for (int j = 0; j < num_keypoints; ++j) {
      float keypoint_y = predictions.keypoint_y(num_keypoints * i + j) /
          coder.keypoint_y_scale() * anchors.h(i) + anchors.y(i);
      float keypoint_x = predictions.keypoint_x(num_keypoints * i + j) /
          coder.keypoint_x_scale() * anchors.w(i) + anchors.x(i);
      decoded_boxes->add_keypoint_y(keypoint_y);
      decoded_boxes->add_keypoint_x(keypoint_x);
    }
  }
}

float ComputeIOU(const BoxCornerEncoding& boxes, const int i, const int j) {
  const float area_i =
      (boxes.ymax(i) - boxes.ymin(i)) * (boxes.xmax(i) - boxes.xmin(i));
  const float area_j =
      (boxes.ymax(j) - boxes.ymin(j)) * (boxes.xmax(j) - boxes.xmin(j));
  if (area_i <= 0 || area_j <= 0) return 0.0;
  const float intersection_ymin = std::max<float>(boxes.ymin(i), boxes.ymin(j));
  const float intersection_xmin = std::max<float>(boxes.xmin(i), boxes.xmin(j));
  const float intersection_ymax = std::min<float>(boxes.ymax(i), boxes.ymax(j));
  const float intersection_xmax = std::min<float>(boxes.xmax(i), boxes.xmax(j));
  const float intersection_area =
      std::max<float>(intersection_ymax - intersection_ymin, 0.0) *
      std::max<float>(intersection_xmax - intersection_xmin, 0.0);
  return intersection_area / (area_i + area_j - intersection_area);
}

void NonMaxSuppressionMultiClass(const BoxCornerEncoding& boxes,
                                 const std::vector<float>& scores,
                                 const int num_classes,
                                 const int max_detection_per_class,
                                 const float score_threshold,
                                 const float iou_threshold,
                                 DetectionResults* detections) {
  const int num_boxes = boxes.ymin_size();
  const int num_keypoints = boxes.keypoint_y_size() / num_boxes;
  // The row index offset is 1 if the background class is included.
  const int label_offset =
      GetLabelOffset(num_boxes, num_classes, scores.size());

  detections->Clear();
  std::vector<int> selected;
  std::vector<float> class_scores;
  class_scores.resize(num_boxes);
  // For each class, perform non-max suppression.
  for (int col = 0; col < num_classes; col++) {
    for (int row = 0; row < num_boxes; row++) {
      class_scores[row] =
          scores[row * (num_classes + label_offset) + col + label_offset];
    }
    NonMaxSuppression(boxes, class_scores, max_detection_per_class,
                      score_threshold, iou_threshold, &selected);
    for (const auto& selected_index : selected) {
      auto* new_detection = detections->add_detection();
      auto* new_detection_box = new_detection->mutable_box();
      new_detection_box->add_ymin(boxes.ymin(selected_index));
      new_detection_box->add_xmin(boxes.xmin(selected_index));
      new_detection_box->add_ymax(boxes.ymax(selected_index));
      new_detection_box->add_xmax(boxes.xmax(selected_index));
      new_detection->add_score(class_scores[selected_index]);
      new_detection->add_class_index(col);
      for (int i = 0; i < num_keypoints; ++i) {
        new_detection_box->add_keypoint_y(boxes.keypoint_y(
            selected_index * num_keypoints + i));
        new_detection_box->add_keypoint_x(boxes.keypoint_x(
            selected_index * num_keypoints + i));
      }
    }
  }
}

void NonMaxSuppressionMultiClassFast(
    const BoxCornerEncoding& boxes, const std::vector<float>& scores,
    const int num_classes, const int max_detection, const int max_category,
    const float score_threshold, const float iou_threshold,
    DetectionResults* detections) {
  const int num_boxes = boxes.ymin_size();
  const int num_keypoints = boxes.keypoint_y_size() / num_boxes;
  const int label_offset =
      GetLabelOffset(num_boxes, num_classes, scores.size());

  int num_category = std::min(max_category, num_classes);
  detections->Clear();
  std::vector<float> max_scores;
  max_scores.resize(num_boxes);
  std::vector<int> sorted_class_indices;
  sorted_class_indices.resize(num_boxes * num_classes);
  for (int row = 0; row < num_boxes; row++) {
    const float* box_scores =
        scores.data() + row * (num_classes + label_offset) + label_offset;
    int* class_indices = sorted_class_indices.data() + row * num_classes;
    DecreasingPartialArgSort(box_scores, num_classes, num_category,
                             class_indices);
    max_scores[row] = box_scores[class_indices[0]];
  }
  // Perform non-max suppression on max scores
  std::vector<int> selected;
  NonMaxSuppression(boxes, max_scores, max_detection, score_threshold,
                    iou_threshold, &selected);
  for (const auto& selected_index : selected) {
    auto* new_detection = detections->add_detection();
    auto* new_detection_box = new_detection->mutable_box();
    new_detection_box->add_ymin(boxes.ymin(selected_index));
    new_detection_box->add_xmin(boxes.xmin(selected_index));
    new_detection_box->add_ymax(boxes.ymax(selected_index));
    new_detection_box->add_xmax(boxes.xmax(selected_index));
    const float* box_scores = scores.data() +
                              selected_index * (num_classes + label_offset) +
                              label_offset;
    const int* class_indices =
        sorted_class_indices.data() + selected_index * num_classes;
    for (int i = 0; i < num_category; ++i) {
      new_detection->add_score(box_scores[class_indices[i]]);
      new_detection->add_class_index(class_indices[i]);
    }
    for (int i = 0; i < num_keypoints; ++i) {
      new_detection_box->add_keypoint_y(boxes.keypoint_y(
          selected_index * num_keypoints + i));
      new_detection_box->add_keypoint_x(boxes.keypoint_x(
          selected_index * num_keypoints + i));
    }
  }
}

void NonMaxSuppressionMultiClassRestrict(
    std::vector<int> restricted_class_indices, const BoxCornerEncoding& boxes,
    const std::vector<float>& scores, const int num_classes,
    const int max_detection, const int max_category,
    const float score_threshold, const float iou_threshold,
    DetectionResults* detections) {
  int num_boxes = boxes.ymin_size();
  const int label_offset =
      GetLabelOffset(num_boxes, num_classes, scores.size());
  // Slice the score matrix along columns to extract the scores of the
  // restricted classes.
  int restricted_num_classes = restricted_class_indices.size();
  std::vector<float> restricted_scores;
  restricted_scores.reserve(num_boxes * restricted_num_classes);
  for (int i = 0; i < num_boxes; ++i) {
    for (int index : restricted_class_indices) {
      CHECK(index >= 0 && index < num_classes + label_offset);
      restricted_scores.push_back(
          scores[i * (num_classes + label_offset) + index + label_offset]);
    }
  }
  // Apply non-maxima suppression to the sliced score matrix.
  NonMaxSuppressionMultiClassFast(
      boxes, restricted_scores, restricted_num_classes, max_detection,
      max_category, score_threshold, iou_threshold, detections);
  // Resulting indices are based on score matrix column index: remap to the
  // original class indices.
  for (auto& detection : *detections->mutable_detection()) {
    for (int i = 0; i < detection.class_index_size(); ++i) {
      detection.set_class_index(
          i, restricted_class_indices[detection.class_index(i)]);
    }
  }
}

void NonMaxSuppression(const BoxCornerEncoding& boxes,
                       const std::vector<float>& scores,
                       const int max_detection, const float score_threshold,
                       const float iou_threshold, std::vector<int>* selected) {
  CHECK_EQ(boxes.ymin_size(), scores.size())
      << "The number of bounding boxes and scores does not match.";
  CHECK_GT(max_detection, 0) << "Maximum detections should be positive.";
  CHECK_GT(iou_threshold, 0.0) << "iou_threshold should be positive.";
  CHECK_LT(iou_threshold, 1.0) << "iou_threshold should be less than 1.";
  ValidateBoxes(boxes);

  // threshold scores
  std::vector<int> keep_indices;
  std::vector<float> keep_scores;
  ApplyThreshold(scores, score_threshold, &keep_scores, &keep_indices);

  std::vector<int> sorted_indices;
  DecreasingArgSort(keep_scores, &sorted_indices);

  const int num_boxes = keep_scores.size();
  const int output_size = std::min(num_boxes, max_detection);
  std::vector<bool> active(num_boxes, true);
  selected->clear();
  int num_active = active.size();
  for (int i = 0; i < num_boxes; ++i) {
    if (num_active == 0 || selected->size() >= output_size) break;
    if (active[i]) {
      selected->push_back(keep_indices[sorted_indices[i]]);
      active[i] = false;
      num_active--;
    } else {
      continue;
    }
    for (int j = i + 1; j < num_boxes; ++j) {
      if (active[j]) {
        float iou = ComputeIOU(boxes, keep_indices[sorted_indices[i]],
                               keep_indices[sorted_indices[j]]);
        if (iou > iou_threshold) {
          active[j] = false;
          num_active--;
        }
      }
    }
  }
}

void NormalizeDetectionBoxes(const int width, const int height,
                             DetectionResults* boxes) {
  for (auto& det : *boxes->mutable_detection()) {
    auto *box = det.mutable_box();
    box->set_ymin(0, box->ymin(0) / height);
    box->set_ymax(0, box->ymax(0) / height);
    box->set_xmin(0, box->xmin(0) / width);
    box->set_xmax(0, box->xmax(0) / width);
    const int num_keypoints = box->keypoint_y_size();
    for (int i = 0; i < num_keypoints; ++i) {
      box->set_keypoint_y(i, box->keypoint_y(i) / height);
      box->set_keypoint_x(i, box->keypoint_x(i) / width);
    }
  }
}

void DenormalizeDetectionBoxes(const int width, const int height,
                               DetectionResults* boxes) {
  for (auto& det : *boxes->mutable_detection()) {
    auto* box = det.mutable_box();
    box->set_ymin(0, box->ymin(0) * (height - 1));
    box->set_ymax(0, box->ymax(0) * (height - 1));
    box->set_xmin(0, box->xmin(0) * (width - 1));
    box->set_xmax(0, box->xmax(0) * (width - 1));
    const int num_keypoints = box->keypoint_y_size();
    for (int i = 0; i < num_keypoints; ++i) {
      box->set_keypoint_y(i, box->keypoint_y(i) * (height - 1));
      box->set_keypoint_x(i, box->keypoint_x(i) * (width - 1));
    }
  }
}

void ClampBoxCoordinates(DetectionResults* boxes) {
  for (auto& detection : *boxes->mutable_detection()) {
    auto* box = detection.mutable_box();
    box->set_ymin(0, std::max(0.f, box->ymin(0)));
    box->set_ymax(0, std::min(1.f, box->ymax(0)));
    box->set_xmin(0, std::max(0.f, box->xmin(0)));
    box->set_xmax(0, std::min(1.f, box->xmax(0)));
  }
}

bool GenerateSsdAnchors(const AnchorGenerationOptions& options,
                        CenterSizeEncoding* anchors) {
  const int base_anchor_width = options.base_anchor_width();
  const int base_anchor_height = options.base_anchor_height();
  const float min_anchor_scale = options.min_anchor_scale();
  const float max_anchor_scale = options.max_anchor_scale();

  const float* aspect_ratios_ptr = options.anchor_aspect_ratios().data();
  const int num_aspect_ratios = options.anchor_aspect_ratios_size();
  const std::vector<float> anchor_aspect_ratios(
      aspect_ratios_ptr, aspect_ratios_ptr + num_aspect_ratios);

  const int* strides_ptr = options.anchor_strides().data();
  const int num_strides = options.anchor_strides_size();
  const std::vector<int> anchor_strides(strides_ptr, strides_ptr + num_strides);

  // Must set both image width and height or neither
  CHECK_EQ(options.has_image_width(), options.has_image_height());

  if (options.has_image_width() && options.has_image_height()) {
    const int* offsets_ptr = options.anchor_offsets().data();
    const int num_offsets = options.anchor_offsets_size();
    const std::vector<int> anchor_offsets(offsets_ptr,
                                          offsets_ptr + num_offsets);
    return GenerateSsdAnchors(
        options.image_width(), options.image_height(), base_anchor_width,
        base_anchor_height, min_anchor_scale, max_anchor_scale,
        anchor_aspect_ratios, anchor_strides, anchor_offsets, anchors);
  }
  return GenerateSsdAnchors(base_anchor_width, base_anchor_height,
                            min_anchor_scale, max_anchor_scale,
                            anchor_aspect_ratios, anchor_strides, anchors);
}

bool GenerateSsdAnchors(int input_width, int input_height, float min_scale,
                        float max_scale,
                        const std::vector<float>& aspect_ratios,
                        const std::vector<int>& anchor_strides,
                        CenterSizeEncoding* anchors) {
  int num_layers = anchor_strides.size();
  std::vector<int> anchor_offsets(num_layers);
  for (int i = 0; i < num_layers; ++i) {
    anchor_offsets[i] = (anchor_strides[i] + 1) / 2;
  }
  return GenerateSsdAnchors(input_width,
                            input_height,
                            input_width,
                            input_height,
                            min_scale,
                            max_scale,
                            aspect_ratios,
                            anchor_strides,
                            anchor_offsets,
                            anchors);
}

bool GenerateSsdAnchors(int input_width, int input_height,
                        int base_anchor_width, int base_anchor_height,
                        float min_scale, float max_scale,
                        const std::vector<float>& aspect_ratios,
                        const std::vector<int>& anchor_strides,
                        const std::vector<int>& anchor_offsets,
                        CenterSizeEncoding* anchors) {
  constexpr float kSqrt2 = 1.414213562f;
  int num_layers = anchor_strides.size();
  if (num_layers != anchor_offsets.size()) {
    LOG(ERROR) << absl::StrCat("The size of anchor strides (",
                               anchor_strides.size(),
                               ") and anchor "
                               "offsets (",
                               anchor_offsets.size(), ") must be the same.");
    return false;
  }
  std::vector<float> scales(num_layers);
  // Populate scales.
  for (int i = 0; i < num_layers; ++i) {
    scales[i] = min_scale + (max_scale - min_scale) * i / (num_layers - 1);
  }
  // Populate square roots of aspect ratios.
  int num_aspect_ratios = aspect_ratios.size();
  std::vector<float> sqrt_aspect_ratios(num_aspect_ratios);
  for (int i = 0; i < num_aspect_ratios; ++i) {
    sqrt_aspect_ratios[i] = std::sqrt(aspect_ratios[i]);
  }
  // Generate anchors.
  float normalized_width = static_cast<float>(base_anchor_width) / input_width;
  float normalized_height =
      static_cast<float>(base_anchor_height) / input_height;
  anchors->Clear();
  for (int i = 0; i < num_layers; ++i) {
    float scale = scales[i];
    float next_scale;
    if (i == num_layers - 1) {
      next_scale = 1.0;
    } else {
      next_scale = scales[i + 1];
    }
    float interpolated_scale = std::sqrt(scale * next_scale);
    float normalized_scale_width = scale * normalized_width;
    float normalized_scale_height = scale * normalized_height;
    int anchor_map_height =
        (input_height + anchor_strides[i] - 1) / anchor_strides[i];
    int anchor_map_width =
        (input_width + anchor_strides[i] - 1) / anchor_strides[i];
    for (int anchor_idx_y = 0; anchor_idx_y < anchor_map_height;
         ++anchor_idx_y) {
      float y = static_cast<float>(
          anchor_offsets[i] + anchor_strides[i] * anchor_idx_y) / input_height;
      for (int anchor_idx_x = 0; anchor_idx_x < anchor_map_width;
         ++anchor_idx_x) {
        float x = static_cast<float>(
            anchor_offsets[i] + anchor_strides[i] * anchor_idx_x) / input_width;
        if (i == 0) {
          // Scale: 0.1, Aspect Ratio: 1.0
          anchors->add_x(x);
          anchors->add_y(y);
          anchors->add_w(0.1 * normalized_width);
          anchors->add_h(0.1 * normalized_height);
          // Scale: scale, Aspect Ratio: 2.0
          anchors->add_x(x);
          anchors->add_y(y);
          anchors->add_w(normalized_scale_width * kSqrt2);
          anchors->add_h(normalized_scale_height / kSqrt2);
          // Scale: scale, Aspect Ratio: 0.5
          anchors->add_x(x);
          anchors->add_y(y);
          anchors->add_w(normalized_scale_width / kSqrt2);
          anchors->add_h(normalized_scale_height * kSqrt2);
          continue;
        }
        for (int j = 0; j < num_aspect_ratios; ++j) {
          // Scale: scale, Aspect Ratio: aspect_ratio
          anchors->add_x(x);
          anchors->add_y(y);
          anchors->add_w(normalized_scale_width * sqrt_aspect_ratios[j]);
          anchors->add_h(normalized_scale_height / sqrt_aspect_ratios[j]);
        }
        // Interpolated anchors
        anchors->add_x(x);
        anchors->add_y(y);
        anchors->add_w(interpolated_scale * normalized_width);
        anchors->add_h(interpolated_scale * normalized_height);
      }
    }
  }
  return true;
}

}  // namespace tflite
}  // namespace lstm_object_detection