File size: 9,543 Bytes
0b8359d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
# Copyright 2018 Google, Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================



"""Closed form linear regression.

Can be differentiated through.
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import collections
import numpy as np
import sonnet as snt
import tensorflow as tf

from learning_unsupervised_learning import utils
from learning_unsupervised_learning import variable_replace


def solve_ridge(x, y, ridge_factor):
  with tf.name_scope("solve_ridge"):
    # Added a column of ones to the end of the feature matrix for bias
    A = tf.concat([x, tf.ones((x.shape.as_list()[0], 1))], axis=1)

    # Analytic solution for the ridge regression loss
    inv_target = tf.matmul(A, A, transpose_a=True)
    np_diag_penalty = ridge_factor * np.ones(
        A.shape.as_list()[1], dtype="float32")
    # Remove penalty on bias component of weights
    np_diag_penalty[-1] = 0.
    diag_penalty = tf.constant(np_diag_penalty)
    inv_target += tf.diag(diag_penalty)

    inv = tf.matrix_inverse(inv_target)
    w = tf.matmul(inv, tf.matmul(A, y, transpose_a=True))
    return w


class LinearRegressionMetaObjective(snt.AbstractModule):
  """A meta objective based on training Ridge Regression with analytic solution.

  This is used to evaluate the performance of a given feature set trained in
  some other manner.
  """

  def __init__(self,
               local_device=None,
               remote_device=None,
               zero_one_labels=True,
               normalize_y_hat=True,
               normalize_act=False,
               averages=1,
               ridge_factor=0.1,
               center_y=True,
               hinge_loss=False,
               samples_per_class=10,
               test_train_scalar=1.0,
              ):
    self._local_device = local_device
    self._remote_device = remote_device
    self.zero_one_labels = zero_one_labels
    self.normalize_y_hat = normalize_y_hat
    self.normalize_act = normalize_act
    self.ridge_factor = ridge_factor
    self.averages = averages
    self.samples_per_class = samples_per_class
    self.center_y=center_y
    self.test_train_scalar=test_train_scalar
    self.hinge_loss = hinge_loss

    self.dataset_map = {}

    super(LinearRegressionMetaObjective,
          self).__init__(name="LinearRegressionMetaObjective")

  def _build(self, dataset, feature_transformer):
    if self.samples_per_class is not None:
      if dataset not in self.dataset_map:
        # datasets are outside of frames from while loops
        with tf.control_dependencies(None):
          self.dataset_map[dataset] = utils.sample_n_per_class(
              dataset, self.samples_per_class)

      dataset = self.dataset_map[dataset]

    stats = collections.defaultdict(list)
    losses = []
    # TODO(lmetz) move this to ingraph control flow?
    for _ in xrange(self.averages):
      loss, stat = self._build_once(dataset, feature_transformer)
      losses.append(loss)
      for k, v in stat.items():
        stats[k].append(v)
    stats = {k: tf.add_n(v) / float(len(v)) for k, v in stats.items()}

    summary_updates = []
    for k, v in stats.items():
      tf.summary.scalar(k, v)

    with tf.control_dependencies(summary_updates):
      return tf.add_n(losses) / float(len(losses))

  def _build_once(self, dataset, feature_transformer):
    with tf.device(self._local_device):
      batch = dataset()
      num_classes = batch.label_onehot.shape.as_list()[1]

      regression_mod = snt.Linear(num_classes)

      if self.normalize_act:

        def normalize_transformer(x):
          unnorm_x = feature_transformer(x)
          return tf.nn.l2_normalize(unnorm_x, 0)

        feature_transformer_wrap = normalize_transformer
      else:
        feature_transformer_wrap = feature_transformer

      # construct the variables of the right shape in the sonnet module by
      # calling a forward pass through the regressor.
      with utils.assert_no_new_variables():
        dummy_features = feature_transformer_wrap(batch)
      regression_mod(dummy_features)
      reg_w = regression_mod.w
      reg_b = regression_mod.b

      batch_test = dataset()
      all_batch = utils.structure_map_multi(lambda x: tf.concat(x, 0), [batch, batch_test])
      #all_batch = tf.concat([batch, batch_test], 0)
      # Grab a new batch of data from the dataset.
      features = feature_transformer_wrap(all_batch)
      features, features_test = utils.structure_map_split(lambda x: tf.split(x, 2, axis=0), features)

      def center_y(y):
        y -= tf.reduce_mean(y)
        y *= tf.rsqrt(tf.reduce_mean(tf.reduce_sum(y**2, axis=[1], keep_dims=True)))
        return y
      def get_y_vec(batch):
        y_pieces = []
        if hasattr(batch, "label_onehot"):
          if self.zero_one_labels:
            y_pieces += [batch.label_onehot]
          else:
            y_pieces += [2. * batch.label_onehot - 1.]
        if hasattr(batch, "regression_target"):
          y_pieces += [batch.regression_target]
        y = tf.concat(y_pieces, 1)
        if self.center_y:
          y = center_y(y)
        return y

      y_train = get_y_vec(batch)

      w = solve_ridge(features, y_train, self.ridge_factor)

      # Generate features from another batch to evaluate loss on the validation
      # set. This provide a less overfit signal to the learned optimizer.
      y_test = get_y_vec(batch_test)

      def compute_logit(features):
        # We have updated the classifier mod in previous steps, we need to
        # substitute out those variables to get new values.
        replacement = collections.OrderedDict([(reg_w, w[:-1]), (reg_b, w[-1])])
        with variable_replace.variable_replace(replacement):
          logits = regression_mod(features)

        return logits

      batch_size = y_train.shape.as_list()[0]

      logit_train = compute_logit(features)
      logit_test_unnorm = compute_logit(features_test)
      if self.normalize_y_hat:
        logit_test = logit_test_unnorm / tf.sqrt(
            tf.reduce_sum(logit_test_unnorm**2, axis=[1], keep_dims=True))
      else:
        logit_test = logit_test_unnorm

      stats = {}

      if self.hinge_loss:
        # slightly closer to the true classification loss
        # any distance smaller than 1 is guaranteed to map to the correct class
        mse_test = tf.reduce_sum(tf.nn.relu(tf.reduce_sum(tf.square(logit_test - y_test), axis=1)-1.)) / batch_size
      else:
        mse_test = tf.reduce_sum(tf.square(logit_test - y_test)) / batch_size

      stats["mse_test"] = mse_test

      mse_train = tf.reduce_sum(tf.square(logit_train - y_train)) / batch_size
      stats["mse_train"] = mse_train

      is_correct_test = tf.equal(tf.argmax(logit_test, 1), tf.argmax(y_test, 1))
      accuracy_test = tf.reduce_mean(tf.cast(is_correct_test, tf.float32))
      stats["accuracy_test"] = accuracy_test

      def test_confusion_fn():
        test_confusion = tf.confusion_matrix(tf.argmax(y_test, 1), tf.argmax(logit_test, 1))
        test_confusion = tf.to_float(test_confusion) / tf.constant((logit_test.shape.as_list()[0] / float(logit_test.shape.as_list()[1])), dtype=tf.float32)
        test_confusion = tf.expand_dims(tf.expand_dims(test_confusion, 0), 3)
        return test_confusion
      tf.summary.image("test_confusion", test_confusion_fn())

      def train_confusion_fn():
        train_confusion = tf.confusion_matrix(tf.argmax(y_train, 1), tf.argmax(logit_train, 1))
        train_confusion = tf.to_float(train_confusion) / tf.constant((logit_train.shape.as_list()[0] / float(logit_train.shape.as_list()[1])), dtype=tf.float32)
        train_confusion = tf.expand_dims(tf.expand_dims(train_confusion, 0), 3)
        return train_confusion
      tf.summary.image("train_confusion", train_confusion_fn())

      is_correct = tf.equal(tf.argmax(logit_train, 1), tf.argmax(y_train, 1))
      accuracy_train = tf.reduce_mean(tf.cast(is_correct, tf.float32))
      stats["accuracy_train"] = accuracy_train

      reg = self.ridge_factor * tf.reduce_sum(tf.square(w[:-1])) / batch_size
      stats["ridge_component"] = reg

      stats["total_loss"] = mse_test + reg

      loss_to_train_at = (reg+ mse_test) * self.test_train_scalar + (mse_train + reg)*(1 - self.test_train_scalar)

      loss_to_train_at = tf.identity(loss_to_train_at)

      # Minimizing the test loss should not require regurization because the
      # metaobjective is solved for the training loss
      return loss_to_train_at, stats

  def local_variables(self):
    """List of variables that need to be updated for each evaluation.

    These variables should not be stored on a parameter server and
    should be reset every computation of a meta_objective loss.

    Returns:
      vars: list of tf.Variable
    """
    return list(
        snt.get_variables_in_module(self, tf.GraphKeys.TRAINABLE_VARIABLES))

  def remote_variables(self):
    return []