Spaces:
Running
Running
File size: 2,961 Bytes
0b8359d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Defines all the tasks the model can learn."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import abc
from base import embeddings
from task_specific.word_level import depparse_module
from task_specific.word_level import depparse_scorer
from task_specific.word_level import tagging_module
from task_specific.word_level import tagging_scorers
from task_specific.word_level import word_level_data
class Task(object):
__metaclass__ = abc.ABCMeta
def __init__(self, config, name, loader):
self.config = config
self.name = name
self.loader = loader
self.train_set = self.loader.get_dataset("train")
self.val_set = self.loader.get_dataset("dev" if config.dev_set else "test")
@abc.abstractmethod
def get_module(self, inputs, encoder):
pass
@abc.abstractmethod
def get_scorer(self):
pass
class Tagging(Task):
def __init__(self, config, name, is_token_level=True):
super(Tagging, self).__init__(
config, name, word_level_data.TaggedDataLoader(
config, name, is_token_level))
self.n_classes = len(set(self.loader.label_mapping.values()))
self.is_token_level = is_token_level
def get_module(self, inputs, encoder):
return tagging_module.TaggingModule(
self.config, self.name, self.n_classes, inputs, encoder)
def get_scorer(self):
if self.is_token_level:
return tagging_scorers.AccuracyScorer()
else:
return tagging_scorers.EntityLevelF1Scorer(self.loader.label_mapping)
class DependencyParsing(Tagging):
def __init__(self, config, name):
super(DependencyParsing, self).__init__(config, name, True)
def get_module(self, inputs, encoder):
return depparse_module.DepparseModule(
self.config, self.name, self.n_classes, inputs, encoder)
def get_scorer(self):
return depparse_scorer.DepparseScorer(
self.n_classes, (embeddings.get_punctuation_ids(self.config)))
def get_task(config, name):
if name in ["ccg", "pos"]:
return Tagging(config, name, True)
elif name in ["chunk", "ner", "er"]:
return Tagging(config, name, False)
elif name == "depparse":
return DependencyParsing(config, name)
else:
raise ValueError("Unknown task", name)
|