File size: 12,592 Bytes
0b8359d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Basic blocks for building tensorflow models."""

import numpy as np
import tensorflow as tf

import block_base
import block_util

# pylint does not recognize block_base.BlockBase.__call__().
# pylint: disable=not-callable


def HandleConvPaddingModes(x, padding, kernel_shape, strides):
  """Returns an updated tensor and padding type for REFLECT and SYMMETRIC.

  Args:
    x: A 4D tensor with shape [batch_size, height, width, depth].
    padding: Padding mode (SAME, VALID, REFLECT, or SYMMETRIC).
    kernel_shape: Shape of convolution kernel that will be applied.
    strides: Convolution stride that will be used.

  Returns:
    x and padding after adjustments for REFLECT and SYMMETRIC.
  """
  # For 1x1 convolution, all padding modes are the same.
  if np.all(kernel_shape[:2] == 1):
    return x, 'VALID'

  if padding == 'REFLECT' or padding == 'SYMMETRIC':
    # We manually compute the number of paddings as if 'SAME'.
    # From Tensorflow kernel, the formulas are as follows.
    #   output_shape = ceil(input_shape / strides)
    #   paddings = (output_shape - 1) * strides + filter_size - input_shape
    # Let x, y, s be a shorthand notations for input_shape, output_shape, and
    # strides, respectively. Let (x - 1) = sn + r where 0 <= r < s. Note that
    #   y - 1 = ceil(x / s) - 1 = floor((x - 1) / s) = n
    # provided that x > 0. Therefore
    #   paddings = n * s + filter_size - (sn + r + 1)
    #            = filter_size - r - 1.
    input_shape = x.get_shape()  # shape at graph construction time
    img_shape = tf.shape(x)[1:3]  # image shape (no batch) at run time
    remainder = tf.mod(img_shape - 1, strides[1:3])
    pad_sizes = kernel_shape[:2] - remainder - 1

    pad_rows = pad_sizes[0]
    pad_cols = pad_sizes[1]
    pad = tf.stack([[0, 0], tf.stack([pad_rows // 2, (pad_rows + 1) // 2]),
                    tf.stack([pad_cols // 2, (pad_cols + 1) // 2]), [0, 0]])

    # Manually pad the input and switch the padding mode to 'VALID'.
    x = tf.pad(x, pad, mode=padding)
    x.set_shape([input_shape[0], x.get_shape()[1],
                 x.get_shape()[2], input_shape[3]])
    padding = 'VALID'

  return x, padding


class PassThrough(block_base.BlockBase):
  """A dummy transform block that does nothing."""

  def __init__(self):
    # Pass an empty string to disable name scoping.
    super(PassThrough, self).__init__(name='')

  def _Apply(self, inp):
    return inp

  @property
  def initialized(self):
    """Always returns True."""
    return True


class Bias(object):
  """An initialization helper class for BiasAdd block below."""

  def __init__(self, value=0):
    self.value = value


class BiasAdd(block_base.BlockBase):
  """A tf.nn.bias_add wrapper.

  This wrapper may act as a PassThrough block depending on the initializer
  provided, to make easier optional bias applications in NN blocks, etc.
  See __init__() for the details.
  """

  def __init__(self, initializer=Bias(0), name=None):
    """Initializes Bias block.

    |initializer| parameter have two special cases.

    1. If initializer is None, then this block works as a PassThrough.
    2. If initializer is a Bias class object, then tf.constant_initializer is
       used with the stored value.

    Args:
      initializer: An initializer for the bias variable.
      name: Name of this block.
    """
    super(BiasAdd, self).__init__(name)

    with self._BlockScope():
      if isinstance(initializer, Bias):
        self._initializer = tf.constant_initializer(value=initializer.value)
      else:
        self._initializer = initializer

      self._bias = None

  def _Apply(self, x):
    if not self._bias:
      init = self._initializer([int(x.get_shape()[-1])], x.dtype)
      self._bias = self.NewVar(init)

    return tf.nn.bias_add(x, self._bias)

  def CreateWeightLoss(self):
    return []


class LinearBase(block_base.BlockBase):
  """A matmul wrapper.

  Returns input * W, where matrix W can be customized through derivation.
  """

  def __init__(self, depth, name=None):
    super(LinearBase, self).__init__(name)

    with self._BlockScope():
      self._depth = depth
      self._matrix = None

  def _CreateKernel(self, shape, dtype):
    raise NotImplementedError('This method must be sub-classed.')

  def _Apply(self, x):
    if not self._matrix:
      shape = [int(x.get_shape()[-1]), self._depth]
      self._matrix = self._CreateKernel(shape, x.dtype)

    return tf.matmul(x, self._matrix)


class Linear(LinearBase):
  """A matmul wrapper.

  Returns input * W, where matrix W is learned.
  """

  def __init__(self,
               depth,
               initializer=block_util.RsqrtInitializer(),
               name=None):
    super(Linear, self).__init__(depth, name)

    with self._BlockScope():
      self._initializer = initializer

  def _CreateKernel(self, shape, dtype):
    init = self._initializer(shape, dtype)
    return self.NewVar(init)


class NN(block_base.BlockBase):
  """A neural network layer wrapper.

  Returns act(input * W + b), where matrix W, bias b are learned, and act is an
  optional activation function (i.e., nonlinearity).

  This transform block can handle multiple inputs. If x_1, x_2, ..., x_m are
  the inputs, then returns act(x_1 * W_1 + ... + x_m * W_m + b).

  Attributes:
    nunits: The dimension of the output.
  """

  def __init__(self,
               depth,
               bias=Bias(0),
               act=None,  # e.g., tf.nn.relu
               initializer=block_util.RsqrtInitializer(),
               linear_block_factory=(lambda d, i: Linear(d, initializer=i)),
               name=None):
    """Initializes NN block.

    Args:
      depth: The depth of the output.
      bias: An initializer for the bias, or a Bias class object. If None, there
        will be no bias term for this NN block. See BiasAdd block.
      act: Optional activation function. If None, no activation is applied.
      initializer: The initialization method for the matrix weights.
      linear_block_factory: A function used to create a linear block.
      name: The name of this block.
    """
    super(NN, self).__init__(name)

    with self._BlockScope():
      self._linear_block_factory = linear_block_factory
      self._depth = depth
      self._initializer = initializer
      self._matrices = None

      self._bias = BiasAdd(bias) if bias else PassThrough()
      self._act = act if act else PassThrough()

  def _Apply(self, *args):
    if not self._matrices:
      self._matrices = [
          self._linear_block_factory(self._depth, self._initializer)
          for _ in args]

    if len(self._matrices) != len(args):
      raise ValueError('{} expected {} inputs, but observed {} inputs'.format(
          self.name, len(self._matrices), len(args)))

    if len(args) > 1:
      y = tf.add_n([m(x) for m, x in zip(self._matrices, args)])
    else:
      y = self._matrices[0](args[0])

    return self._act(self._bias(y))


class Conv2DBase(block_base.BlockBase):
  """A tf.nn.conv2d operator."""

  def __init__(self, depth, filter_size, strides, padding,
               bias=None, act=None, atrous_rate=None, conv=tf.nn.conv2d,
               name=None):
    """Initializes a Conv2DBase block.

    Arguments:
      depth: The output depth of the block (i.e. #filters); if negative, the
        output depth will be set to be the same as the input depth.
      filter_size: The size of the 2D filter. If it's specified as an integer,
        it's going to create a square filter. Otherwise, this is a tuple
        specifying the height x width of the filter.
      strides: A tuple specifying the y and x stride.
      padding: One of the valid padding modes allowed by tf.nn.conv2d, or
        'REFLECT'/'SYMMETRIC' for mirror padding.
      bias: An initializer for the bias, or a Bias class object. If None, there
          will be no bias in this block. See BiasAdd block.
      act: Optional activation function applied to the output.
      atrous_rate: optional input rate for ATrous convolution. If not None, this
          will be used and the strides will be ignored.
      conv: The convolution function to use (e.g. tf.nn.conv2d).
      name: The name for this conv2d op.
    """
    super(Conv2DBase, self).__init__(name)

    with self._BlockScope():
      self._act = act if act else PassThrough()
      self._bias = BiasAdd(bias) if bias else PassThrough()

      self._kernel_shape = np.zeros((4,), dtype=np.int32)
      self._kernel_shape[:2] = filter_size
      self._kernel_shape[3] = depth

      self._strides = np.ones((4,), dtype=np.int32)
      self._strides[1:3] = strides
      self._strides = list(self._strides)

      self._padding = padding

      self._kernel = None
      self._conv = conv

      self._atrous_rate = atrous_rate

  def _CreateKernel(self, shape, dtype):
    raise NotImplementedError('This method must be sub-classed')

  def _Apply(self, x):
    """Apply the self._conv op.

    Arguments:
      x: input tensor. It needs to be a 4D tensor of the form
          [batch, height, width, channels].
    Returns:
      The output of the convolution of x with the current convolutional
      kernel.
    Raises:
      ValueError: if number of channels is not defined at graph construction.
    """
    input_shape = x.get_shape().with_rank(4)
    input_shape[3:].assert_is_fully_defined()  # channels must be defined
    if self._kernel is None:
      assert self._kernel_shape[2] == 0, self._kernel_shape
      self._kernel_shape[2] = input_shape[3].value
      if self._kernel_shape[3] < 0:
        # Make output depth be the same as input depth.
        self._kernel_shape[3] = self._kernel_shape[2]
      self._kernel = self._CreateKernel(self._kernel_shape, x.dtype)

    x, padding = HandleConvPaddingModes(
        x, self._padding, self._kernel_shape, self._strides)
    if self._atrous_rate is None:
      x = self._conv(x, self._kernel, strides=self._strides, padding=padding)
    else:
      x = self._conv(x, self._kernel, rate=self._atrous_rate, padding=padding)

    if self._padding != 'VALID':
      # Manually update shape. Known shape information can be lost by tf.pad().
      height = (1 + (input_shape[1].value - 1) // self._strides[1]
                if input_shape[1].value else None)
      width = (1 + (input_shape[2].value - 1) // self._strides[2]
               if input_shape[2].value else None)
      shape = x.get_shape()
      x.set_shape([shape[0], height, width, shape[3]])

    return self._act(self._bias(x))


class Conv2D(Conv2DBase):
  """A tf.nn.conv2d operator."""

  def __init__(self, depth, filter_size, strides, padding,
               bias=None, act=None, initializer=None, name=None):
    """Initializes a Conv2D block.

    Arguments:
      depth: The output depth of the block (i.e., #filters)
      filter_size: The size of the 2D filter. If it's specified as an integer,
        it's going to create a square filter. Otherwise, this is a tuple
        specifying the height x width of the filter.
      strides: A tuple specifying the y and x stride.
      padding: One of the valid padding modes allowed by tf.nn.conv2d, or
        'REFLECT'/'SYMMETRIC' for mirror padding.
      bias: An initializer for the bias, or a Bias class object. If None, there
          will be no bias in this block. See BiasAdd block.
      act: Optional activation function applied to the output.
      initializer: Optional initializer for weights.
      name: The name for this conv2d op.
    """
    super(Conv2D, self).__init__(depth, filter_size, strides, padding, bias,
                                 act, conv=tf.nn.conv2d, name=name)

    with self._BlockScope():
      if initializer is None:
        initializer = block_util.RsqrtInitializer(dims=(0, 1, 2))
      self._initializer = initializer

  def _CreateKernel(self, shape, dtype):
    return self.NewVar(self._initializer(shape, dtype))