Spaces:
Running
Running
File size: 12,592 Bytes
0b8359d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 |
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Basic blocks for building tensorflow models."""
import numpy as np
import tensorflow as tf
import block_base
import block_util
# pylint does not recognize block_base.BlockBase.__call__().
# pylint: disable=not-callable
def HandleConvPaddingModes(x, padding, kernel_shape, strides):
"""Returns an updated tensor and padding type for REFLECT and SYMMETRIC.
Args:
x: A 4D tensor with shape [batch_size, height, width, depth].
padding: Padding mode (SAME, VALID, REFLECT, or SYMMETRIC).
kernel_shape: Shape of convolution kernel that will be applied.
strides: Convolution stride that will be used.
Returns:
x and padding after adjustments for REFLECT and SYMMETRIC.
"""
# For 1x1 convolution, all padding modes are the same.
if np.all(kernel_shape[:2] == 1):
return x, 'VALID'
if padding == 'REFLECT' or padding == 'SYMMETRIC':
# We manually compute the number of paddings as if 'SAME'.
# From Tensorflow kernel, the formulas are as follows.
# output_shape = ceil(input_shape / strides)
# paddings = (output_shape - 1) * strides + filter_size - input_shape
# Let x, y, s be a shorthand notations for input_shape, output_shape, and
# strides, respectively. Let (x - 1) = sn + r where 0 <= r < s. Note that
# y - 1 = ceil(x / s) - 1 = floor((x - 1) / s) = n
# provided that x > 0. Therefore
# paddings = n * s + filter_size - (sn + r + 1)
# = filter_size - r - 1.
input_shape = x.get_shape() # shape at graph construction time
img_shape = tf.shape(x)[1:3] # image shape (no batch) at run time
remainder = tf.mod(img_shape - 1, strides[1:3])
pad_sizes = kernel_shape[:2] - remainder - 1
pad_rows = pad_sizes[0]
pad_cols = pad_sizes[1]
pad = tf.stack([[0, 0], tf.stack([pad_rows // 2, (pad_rows + 1) // 2]),
tf.stack([pad_cols // 2, (pad_cols + 1) // 2]), [0, 0]])
# Manually pad the input and switch the padding mode to 'VALID'.
x = tf.pad(x, pad, mode=padding)
x.set_shape([input_shape[0], x.get_shape()[1],
x.get_shape()[2], input_shape[3]])
padding = 'VALID'
return x, padding
class PassThrough(block_base.BlockBase):
"""A dummy transform block that does nothing."""
def __init__(self):
# Pass an empty string to disable name scoping.
super(PassThrough, self).__init__(name='')
def _Apply(self, inp):
return inp
@property
def initialized(self):
"""Always returns True."""
return True
class Bias(object):
"""An initialization helper class for BiasAdd block below."""
def __init__(self, value=0):
self.value = value
class BiasAdd(block_base.BlockBase):
"""A tf.nn.bias_add wrapper.
This wrapper may act as a PassThrough block depending on the initializer
provided, to make easier optional bias applications in NN blocks, etc.
See __init__() for the details.
"""
def __init__(self, initializer=Bias(0), name=None):
"""Initializes Bias block.
|initializer| parameter have two special cases.
1. If initializer is None, then this block works as a PassThrough.
2. If initializer is a Bias class object, then tf.constant_initializer is
used with the stored value.
Args:
initializer: An initializer for the bias variable.
name: Name of this block.
"""
super(BiasAdd, self).__init__(name)
with self._BlockScope():
if isinstance(initializer, Bias):
self._initializer = tf.constant_initializer(value=initializer.value)
else:
self._initializer = initializer
self._bias = None
def _Apply(self, x):
if not self._bias:
init = self._initializer([int(x.get_shape()[-1])], x.dtype)
self._bias = self.NewVar(init)
return tf.nn.bias_add(x, self._bias)
def CreateWeightLoss(self):
return []
class LinearBase(block_base.BlockBase):
"""A matmul wrapper.
Returns input * W, where matrix W can be customized through derivation.
"""
def __init__(self, depth, name=None):
super(LinearBase, self).__init__(name)
with self._BlockScope():
self._depth = depth
self._matrix = None
def _CreateKernel(self, shape, dtype):
raise NotImplementedError('This method must be sub-classed.')
def _Apply(self, x):
if not self._matrix:
shape = [int(x.get_shape()[-1]), self._depth]
self._matrix = self._CreateKernel(shape, x.dtype)
return tf.matmul(x, self._matrix)
class Linear(LinearBase):
"""A matmul wrapper.
Returns input * W, where matrix W is learned.
"""
def __init__(self,
depth,
initializer=block_util.RsqrtInitializer(),
name=None):
super(Linear, self).__init__(depth, name)
with self._BlockScope():
self._initializer = initializer
def _CreateKernel(self, shape, dtype):
init = self._initializer(shape, dtype)
return self.NewVar(init)
class NN(block_base.BlockBase):
"""A neural network layer wrapper.
Returns act(input * W + b), where matrix W, bias b are learned, and act is an
optional activation function (i.e., nonlinearity).
This transform block can handle multiple inputs. If x_1, x_2, ..., x_m are
the inputs, then returns act(x_1 * W_1 + ... + x_m * W_m + b).
Attributes:
nunits: The dimension of the output.
"""
def __init__(self,
depth,
bias=Bias(0),
act=None, # e.g., tf.nn.relu
initializer=block_util.RsqrtInitializer(),
linear_block_factory=(lambda d, i: Linear(d, initializer=i)),
name=None):
"""Initializes NN block.
Args:
depth: The depth of the output.
bias: An initializer for the bias, or a Bias class object. If None, there
will be no bias term for this NN block. See BiasAdd block.
act: Optional activation function. If None, no activation is applied.
initializer: The initialization method for the matrix weights.
linear_block_factory: A function used to create a linear block.
name: The name of this block.
"""
super(NN, self).__init__(name)
with self._BlockScope():
self._linear_block_factory = linear_block_factory
self._depth = depth
self._initializer = initializer
self._matrices = None
self._bias = BiasAdd(bias) if bias else PassThrough()
self._act = act if act else PassThrough()
def _Apply(self, *args):
if not self._matrices:
self._matrices = [
self._linear_block_factory(self._depth, self._initializer)
for _ in args]
if len(self._matrices) != len(args):
raise ValueError('{} expected {} inputs, but observed {} inputs'.format(
self.name, len(self._matrices), len(args)))
if len(args) > 1:
y = tf.add_n([m(x) for m, x in zip(self._matrices, args)])
else:
y = self._matrices[0](args[0])
return self._act(self._bias(y))
class Conv2DBase(block_base.BlockBase):
"""A tf.nn.conv2d operator."""
def __init__(self, depth, filter_size, strides, padding,
bias=None, act=None, atrous_rate=None, conv=tf.nn.conv2d,
name=None):
"""Initializes a Conv2DBase block.
Arguments:
depth: The output depth of the block (i.e. #filters); if negative, the
output depth will be set to be the same as the input depth.
filter_size: The size of the 2D filter. If it's specified as an integer,
it's going to create a square filter. Otherwise, this is a tuple
specifying the height x width of the filter.
strides: A tuple specifying the y and x stride.
padding: One of the valid padding modes allowed by tf.nn.conv2d, or
'REFLECT'/'SYMMETRIC' for mirror padding.
bias: An initializer for the bias, or a Bias class object. If None, there
will be no bias in this block. See BiasAdd block.
act: Optional activation function applied to the output.
atrous_rate: optional input rate for ATrous convolution. If not None, this
will be used and the strides will be ignored.
conv: The convolution function to use (e.g. tf.nn.conv2d).
name: The name for this conv2d op.
"""
super(Conv2DBase, self).__init__(name)
with self._BlockScope():
self._act = act if act else PassThrough()
self._bias = BiasAdd(bias) if bias else PassThrough()
self._kernel_shape = np.zeros((4,), dtype=np.int32)
self._kernel_shape[:2] = filter_size
self._kernel_shape[3] = depth
self._strides = np.ones((4,), dtype=np.int32)
self._strides[1:3] = strides
self._strides = list(self._strides)
self._padding = padding
self._kernel = None
self._conv = conv
self._atrous_rate = atrous_rate
def _CreateKernel(self, shape, dtype):
raise NotImplementedError('This method must be sub-classed')
def _Apply(self, x):
"""Apply the self._conv op.
Arguments:
x: input tensor. It needs to be a 4D tensor of the form
[batch, height, width, channels].
Returns:
The output of the convolution of x with the current convolutional
kernel.
Raises:
ValueError: if number of channels is not defined at graph construction.
"""
input_shape = x.get_shape().with_rank(4)
input_shape[3:].assert_is_fully_defined() # channels must be defined
if self._kernel is None:
assert self._kernel_shape[2] == 0, self._kernel_shape
self._kernel_shape[2] = input_shape[3].value
if self._kernel_shape[3] < 0:
# Make output depth be the same as input depth.
self._kernel_shape[3] = self._kernel_shape[2]
self._kernel = self._CreateKernel(self._kernel_shape, x.dtype)
x, padding = HandleConvPaddingModes(
x, self._padding, self._kernel_shape, self._strides)
if self._atrous_rate is None:
x = self._conv(x, self._kernel, strides=self._strides, padding=padding)
else:
x = self._conv(x, self._kernel, rate=self._atrous_rate, padding=padding)
if self._padding != 'VALID':
# Manually update shape. Known shape information can be lost by tf.pad().
height = (1 + (input_shape[1].value - 1) // self._strides[1]
if input_shape[1].value else None)
width = (1 + (input_shape[2].value - 1) // self._strides[2]
if input_shape[2].value else None)
shape = x.get_shape()
x.set_shape([shape[0], height, width, shape[3]])
return self._act(self._bias(x))
class Conv2D(Conv2DBase):
"""A tf.nn.conv2d operator."""
def __init__(self, depth, filter_size, strides, padding,
bias=None, act=None, initializer=None, name=None):
"""Initializes a Conv2D block.
Arguments:
depth: The output depth of the block (i.e., #filters)
filter_size: The size of the 2D filter. If it's specified as an integer,
it's going to create a square filter. Otherwise, this is a tuple
specifying the height x width of the filter.
strides: A tuple specifying the y and x stride.
padding: One of the valid padding modes allowed by tf.nn.conv2d, or
'REFLECT'/'SYMMETRIC' for mirror padding.
bias: An initializer for the bias, or a Bias class object. If None, there
will be no bias in this block. See BiasAdd block.
act: Optional activation function applied to the output.
initializer: Optional initializer for weights.
name: The name for this conv2d op.
"""
super(Conv2D, self).__init__(depth, filter_size, strides, padding, bias,
act, conv=tf.nn.conv2d, name=name)
with self._BlockScope():
if initializer is None:
initializer = block_util.RsqrtInitializer(dims=(0, 1, 2))
self._initializer = initializer
def _CreateKernel(self, shape, dtype):
return self.NewVar(self._initializer(shape, dtype))
|