Spaces:
Running
Running
File size: 33,781 Bytes
0b8359d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 |
# Copyright 2016 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import numpy as np
import sys
import tensorflow as tf
import src.utils as utils
import logging
from tensorflow.contrib import slim
from tensorflow.contrib.metrics.python.ops import confusion_matrix_ops
from tensorflow.contrib.slim import arg_scope
from tensorflow.contrib.slim.nets import resnet_v2
from tensorflow.python.framework import dtypes
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import check_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import variable_scope
sys.path.insert(0, '../slim')
from preprocessing import inception_preprocessing as ip
resnet_v2_50 = resnet_v2.resnet_v2_50
def custom_residual_block(x, neurons, kernel_size, stride, name, is_training,
wt_decay=0.0001, use_residual=True,
residual_stride_conv=True, conv_fn=slim.conv2d,
batch_norm_param=None):
# batch norm x and relu
init_var = np.sqrt(2.0/(kernel_size**2)/neurons)
with arg_scope([conv_fn],
weights_regularizer=slim.l2_regularizer(wt_decay),
weights_initializer=tf.random_normal_initializer(stddev=init_var),
biases_initializer=tf.zeros_initializer()):
if batch_norm_param is None:
batch_norm_param = {'center': True, 'scale': False,
'activation_fn':tf.nn.relu,
'is_training': is_training}
y = slim.batch_norm(x, scope=name+'_bn', **batch_norm_param)
y = conv_fn(y, num_outputs=neurons, kernel_size=kernel_size, stride=stride,
activation_fn=None, scope=name+'_1',
normalizer_fn=slim.batch_norm,
normalizer_params=batch_norm_param)
y = conv_fn(y, num_outputs=neurons, kernel_size=kernel_size,
stride=1, activation_fn=None, scope=name+'_2')
if use_residual:
if stride != 1 or x.get_shape().as_list()[-1] != neurons:
batch_norm_param_ = dict(batch_norm_param)
batch_norm_param_['activation_fn'] = None
x = conv_fn(x, num_outputs=neurons, kernel_size=1,
stride=stride if residual_stride_conv else 1,
activation_fn=None, scope=name+'_0_1x1',
normalizer_fn=slim.batch_norm,
normalizer_params=batch_norm_param_)
if not residual_stride_conv:
x = slim.avg_pool2d(x, 1, stride=stride, scope=name+'_0_avg')
y = tf.add(x, y, name=name+'_add')
return y
def step_gt_prob(step, step_number_op):
# Change samping probability from 1 to -1 at step steps.
with tf.name_scope('step_gt_prob'):
out = tf.cond(tf.less(step_number_op, step),
lambda: tf.constant(1.), lambda: tf.constant(-1.))
return out
def inverse_sigmoid_decay(k, global_step_op):
with tf.name_scope('inverse_sigmoid_decay'):
k = tf.constant(k, dtype=tf.float32)
tmp = k*tf.exp(-tf.cast(global_step_op, tf.float32)/k)
tmp = tmp / (1. + tmp)
return tmp
def dense_resample(im, flow_im, output_valid_mask, name='dense_resample'):
""" Resample reward at particular locations.
Args:
im: ...xHxWxC matrix to sample from.
flow_im: ...xHxWx2 matrix, samples the image using absolute offsets as given
by the flow_im.
"""
with tf.name_scope(name):
valid_mask = None
x, y = tf.unstack(flow_im, axis=-1)
x = tf.cast(tf.reshape(x, [-1]), tf.float32)
y = tf.cast(tf.reshape(y, [-1]), tf.float32)
# constants
shape = tf.unstack(tf.shape(im))
channels = shape[-1]
width = shape[-2]
height = shape[-3]
num_batch = tf.cast(tf.reduce_prod(tf.stack(shape[:-3])), 'int32')
zero = tf.constant(0, dtype=tf.int32)
# Round up and down.
x0 = tf.cast(tf.floor(x), 'int32'); x1 = x0 + 1;
y0 = tf.cast(tf.floor(y), 'int32'); y1 = y0 + 1;
if output_valid_mask:
valid_mask = tf.logical_and(
tf.logical_and(tf.less_equal(x, tf.cast(width, tf.float32)-1.), tf.greater_equal(x, 0.)),
tf.logical_and(tf.less_equal(y, tf.cast(height, tf.float32)-1.), tf.greater_equal(y, 0.)))
valid_mask = tf.reshape(valid_mask, shape=shape[:-1] + [1])
x0 = tf.clip_by_value(x0, zero, width-1)
x1 = tf.clip_by_value(x1, zero, width-1)
y0 = tf.clip_by_value(y0, zero, height-1)
y1 = tf.clip_by_value(y1, zero, height-1)
dim2 = width; dim1 = width * height;
# Create base index
base = tf.reshape(tf.range(num_batch) * dim1, shape=[-1,1])
base = tf.reshape(tf.tile(base, [1, height*width]), shape=[-1])
base_y0 = base + y0 * dim2
base_y1 = base + y1 * dim2
idx_a = base_y0 + x0
idx_b = base_y1 + x0
idx_c = base_y0 + x1
idx_d = base_y1 + x1
# use indices to lookup pixels in the flat image and restore channels dim
sh = tf.stack([tf.constant(-1,dtype=tf.int32), channels])
im_flat = tf.cast(tf.reshape(im, sh), dtype=tf.float32)
pixel_a = tf.gather(im_flat, idx_a)
pixel_b = tf.gather(im_flat, idx_b)
pixel_c = tf.gather(im_flat, idx_c)
pixel_d = tf.gather(im_flat, idx_d)
# and finally calculate interpolated values
x1_f = tf.to_float(x1)
y1_f = tf.to_float(y1)
wa = tf.expand_dims(((x1_f - x) * (y1_f - y)), 1)
wb = tf.expand_dims((x1_f - x) * (1.0 - (y1_f - y)), 1)
wc = tf.expand_dims(((1.0 - (x1_f - x)) * (y1_f - y)), 1)
wd = tf.expand_dims(((1.0 - (x1_f - x)) * (1.0 - (y1_f - y))), 1)
output = tf.add_n([wa * pixel_a, wb * pixel_b, wc * pixel_c, wd * pixel_d])
output = tf.reshape(output, shape=tf.shape(im))
return output, valid_mask
def get_flow(t, theta, map_size, name_scope='gen_flow'):
"""
Rotates the map by theta and translates the rotated map by t.
Assume that the robot rotates by an angle theta and then moves forward by
translation t. This function returns the flow field field. For every pixel in
the new image it tells us which pixel in the original image it came from:
NewI(x, y) = OldI(flow_x(x,y), flow_y(x,y)).
Assume there is a point p in the original image. Robot rotates by R and moves
forward by t. p1 = Rt*p; p2 = p1 - t; (the world moves in opposite direction.
So, p2 = Rt*p - t, thus p2 came from R*(p2+t), which is what this function
calculates.
t: ... x 2 (translation for B batches of N motions each).
theta: ... x 1 (rotation for B batches of N motions each).
Output: ... x map_size x map_size x 2
"""
with tf.name_scope(name_scope):
tx, ty = tf.unstack(tf.reshape(t, shape=[-1, 1, 1, 1, 2]), axis=4)
theta = tf.reshape(theta, shape=[-1, 1, 1, 1])
c = tf.constant((map_size-1.)/2., dtype=tf.float32)
x, y = np.meshgrid(np.arange(map_size), np.arange(map_size))
x = tf.constant(x[np.newaxis, :, :, np.newaxis], dtype=tf.float32, name='x',
shape=[1, map_size, map_size, 1])
y = tf.constant(y[np.newaxis, :, :, np.newaxis], dtype=tf.float32, name='y',
shape=[1,map_size, map_size, 1])
x = x-(-tx+c)
y = y-(-ty+c)
sin_theta = tf.sin(theta)
cos_theta = tf.cos(theta)
xr = cos_theta*x - sin_theta*y
yr = sin_theta*x + cos_theta*y
xr = xr + c
yr = yr + c
flow = tf.stack([xr, yr], axis=-1)
sh = tf.unstack(tf.shape(t), axis=0)
sh = tf.stack(sh[:-1]+[tf.constant(_, dtype=tf.int32) for _ in [map_size, map_size, 2]])
flow = tf.reshape(flow, shape=sh)
return flow
def distort_image(im, fast_mode=False):
# All images in the same batch are transformed the same way, but over
# iterations you see different distortions.
# im should be float with values between 0 and 1.
im_ = tf.reshape(im, shape=(-1,1,3))
im_ = ip.apply_with_random_selector(
im_, lambda x, ordering: ip.distort_color(x, ordering, fast_mode),
num_cases=4)
im_ = tf.reshape(im_, tf.shape(im))
return im_
def fc_network(x, neurons, wt_decay, name, num_pred=None, offset=0,
batch_norm_param=None, dropout_ratio=0.0, is_training=None):
if dropout_ratio > 0:
assert(is_training is not None), \
'is_training needs to be defined when trainnig with dropout.'
repr = []
for i, neuron in enumerate(neurons):
init_var = np.sqrt(2.0/neuron)
if batch_norm_param is not None:
x = slim.fully_connected(x, neuron, activation_fn=None,
weights_initializer=tf.random_normal_initializer(stddev=init_var),
weights_regularizer=slim.l2_regularizer(wt_decay),
normalizer_fn=slim.batch_norm,
normalizer_params=batch_norm_param,
biases_initializer=tf.zeros_initializer(),
scope='{:s}_{:d}'.format(name, offset+i))
else:
x = slim.fully_connected(x, neuron, activation_fn=tf.nn.relu,
weights_initializer=tf.random_normal_initializer(stddev=init_var),
weights_regularizer=slim.l2_regularizer(wt_decay),
biases_initializer=tf.zeros_initializer(),
scope='{:s}_{:d}'.format(name, offset+i))
if dropout_ratio > 0:
x = slim.dropout(x, keep_prob=1-dropout_ratio, is_training=is_training,
scope='{:s}_{:d}'.format('dropout_'+name, offset+i))
repr.append(x)
if num_pred is not None:
init_var = np.sqrt(2.0/num_pred)
x = slim.fully_connected(x, num_pred,
weights_regularizer=slim.l2_regularizer(wt_decay),
weights_initializer=tf.random_normal_initializer(stddev=init_var),
biases_initializer=tf.zeros_initializer(),
activation_fn=None,
scope='{:s}_pred'.format(name))
return x, repr
def concat_state_x_list(f, names):
af = {}
for i, k in enumerate(names):
af[k] = np.concatenate([x[i] for x in f], axis=1)
return af
def concat_state_x(f, names):
af = {}
for k in names:
af[k] = np.concatenate([x[k] for x in f], axis=1)
# af[k] = np.swapaxes(af[k], 0, 1)
return af
def sample_action(rng, action_probs, optimal_action, sample_gt_prob,
type='sample', combine_type='one_or_other'):
optimal_action_ = optimal_action/np.sum(optimal_action+0., 1, keepdims=True)
action_probs_ = action_probs/np.sum(action_probs+0.001, 1, keepdims=True)
batch_size = action_probs_.shape[0]
action = np.zeros((batch_size), dtype=np.int32)
action_sample_wt = np.zeros((batch_size), dtype=np.float32)
if combine_type == 'add':
sample_gt_prob_ = np.minimum(np.maximum(sample_gt_prob, 0.), 1.)
for i in range(batch_size):
if combine_type == 'one_or_other':
sample_gt = rng.rand() < sample_gt_prob
if sample_gt: distr_ = optimal_action_[i,:]*1.
else: distr_ = action_probs_[i,:]*1.
elif combine_type == 'add':
distr_ = optimal_action_[i,:]*sample_gt_prob_ + \
(1.-sample_gt_prob_)*action_probs_[i,:]
distr_ = distr_ / np.sum(distr_)
if type == 'sample':
action[i] = np.argmax(rng.multinomial(1, distr_, size=1))
elif type == 'argmax':
action[i] = np.argmax(distr_)
action_sample_wt[i] = action_probs_[i, action[i]] / distr_[action[i]]
return action, action_sample_wt
def train_step_custom_online_sampling(sess, train_op, global_step,
train_step_kwargs, mode='train'):
m = train_step_kwargs['m']
obj = train_step_kwargs['obj']
rng_data = train_step_kwargs['rng_data']
rng_action = train_step_kwargs['rng_action']
writer = train_step_kwargs['writer']
iters = train_step_kwargs['iters']
num_steps = train_step_kwargs['num_steps']
logdir = train_step_kwargs['logdir']
dagger_sample_bn_false = train_step_kwargs['dagger_sample_bn_false']
train_display_interval = train_step_kwargs['train_display_interval']
if 'outputs' not in m.train_ops:
m.train_ops['outputs'] = []
s_ops = m.summary_ops[mode]
val_additional_ops = []
# Print all variables here.
if False:
v = tf.get_collection(tf.GraphKeys.VARIABLES)
v_op = [_.value() for _ in v]
v_op_value = sess.run(v_op)
filter = lambda x, y: 'Adam' in x.name
# filter = lambda x, y: np.is_any_nan(y)
ind = [i for i, (_, __) in enumerate(zip(v, v_op_value)) if filter(_, __)]
v = [v[i] for i in ind]
v_op_value = [v_op_value[i] for i in ind]
for i in range(len(v)):
logging.info('XXXX: variable: %30s, is_any_nan: %5s, norm: %f.',
v[i].name, np.any(np.isnan(v_op_value[i])),
np.linalg.norm(v_op_value[i]))
tt = utils.Timer()
for i in range(iters):
tt.tic()
# Sample a room.
e = obj.sample_env(rng_data)
# Initialize the agent.
init_env_state = e.reset(rng_data)
# Get and process the common data.
input = e.get_common_data()
input = e.pre_common_data(input)
feed_dict = prepare_feed_dict(m.input_tensors['common'], input)
if dagger_sample_bn_false:
feed_dict[m.train_ops['batch_norm_is_training_op']] = False
common_data = sess.run(m.train_ops['common'], feed_dict=feed_dict)
states = []
state_features = []
state_targets = []
net_state_to_input = []
step_data_cache = []
executed_actions = []
rewards = []
action_sample_wts = []
states.append(init_env_state)
net_state = sess.run(m.train_ops['init_state'], feed_dict=feed_dict)
net_state = dict(zip(m.train_ops['state_names'], net_state))
net_state_to_input.append(net_state)
for j in range(num_steps):
f = e.get_features(states[j], j)
f = e.pre_features(f)
f.update(net_state)
f['step_number'] = np.ones((1,1,1), dtype=np.int32)*j
state_features.append(f)
feed_dict = prepare_feed_dict(m.input_tensors['step'], state_features[-1])
optimal_action = e.get_optimal_action(states[j], j)
for x, v in zip(m.train_ops['common'], common_data):
feed_dict[x] = v
if dagger_sample_bn_false:
feed_dict[m.train_ops['batch_norm_is_training_op']] = False
outs = sess.run([m.train_ops['step'], m.sample_gt_prob_op,
m.train_ops['step_data_cache'],
m.train_ops['updated_state'],
m.train_ops['outputs']], feed_dict=feed_dict)
action_probs = outs[0]
sample_gt_prob = outs[1]
step_data_cache.append(dict(zip(m.train_ops['step_data_cache'], outs[2])))
net_state = outs[3]
if hasattr(e, 'update_state'):
outputs = outs[4]
outputs = dict(zip(m.train_ops['output_names'], outputs))
e.update_state(outputs, j)
state_targets.append(e.get_targets(states[j], j))
if j < num_steps-1:
# Sample from action_probs and optimal action.
action, action_sample_wt = sample_action(
rng_action, action_probs, optimal_action, sample_gt_prob,
m.sample_action_type, m.sample_action_combine_type)
next_state, reward = e.take_action(states[j], action, j)
executed_actions.append(action)
states.append(next_state)
rewards.append(reward)
action_sample_wts.append(action_sample_wt)
net_state = dict(zip(m.train_ops['state_names'], net_state))
net_state_to_input.append(net_state)
# Concatenate things together for training.
rewards = np.array(rewards).T
action_sample_wts = np.array(action_sample_wts).T
executed_actions = np.array(executed_actions).T
all_state_targets = concat_state_x(state_targets, e.get_targets_name())
all_state_features = concat_state_x(state_features,
e.get_features_name()+['step_number'])
# all_state_net = concat_state_x(net_state_to_input,
# m.train_ops['state_names'])
all_step_data_cache = concat_state_x(step_data_cache,
m.train_ops['step_data_cache'])
dict_train = dict(input)
dict_train.update(all_state_features)
dict_train.update(all_state_targets)
# dict_train.update(all_state_net)
dict_train.update(net_state_to_input[0])
dict_train.update(all_step_data_cache)
dict_train.update({'rewards': rewards,
'action_sample_wts': action_sample_wts,
'executed_actions': executed_actions})
feed_dict = prepare_feed_dict(m.input_tensors['train'], dict_train)
for x in m.train_ops['step_data_cache']:
feed_dict[x] = all_step_data_cache[x]
if mode == 'train':
n_step = sess.run(global_step)
if np.mod(n_step, train_display_interval) == 0:
total_loss, np_global_step, summary, print_summary = sess.run(
[train_op, global_step, s_ops.summary_ops, s_ops.print_summary_ops],
feed_dict=feed_dict)
logging.error("")
else:
total_loss, np_global_step, summary = sess.run(
[train_op, global_step, s_ops.summary_ops], feed_dict=feed_dict)
if writer is not None and summary is not None:
writer.add_summary(summary, np_global_step)
should_stop = sess.run(m.should_stop_op)
if mode != 'train':
arop = [[] for j in range(len(s_ops.additional_return_ops))]
for j in range(len(s_ops.additional_return_ops)):
if s_ops.arop_summary_iters[j] < 0 or i < s_ops.arop_summary_iters[j]:
arop[j] = s_ops.additional_return_ops[j]
val = sess.run(arop, feed_dict=feed_dict)
val_additional_ops.append(val)
tt.toc(log_at=60, log_str='val timer {:d} / {:d}: '.format(i, iters),
type='time')
if mode != 'train':
# Write the default val summaries.
summary, print_summary, np_global_step = sess.run(
[s_ops.summary_ops, s_ops.print_summary_ops, global_step])
if writer is not None and summary is not None:
writer.add_summary(summary, np_global_step)
# write custom validation ops
val_summarys = []
val_additional_ops = zip(*val_additional_ops)
if len(s_ops.arop_eval_fns) > 0:
val_metric_summary = tf.summary.Summary()
for i in range(len(s_ops.arop_eval_fns)):
val_summary = None
if s_ops.arop_eval_fns[i] is not None:
val_summary = s_ops.arop_eval_fns[i](val_additional_ops[i],
np_global_step, logdir,
val_metric_summary,
s_ops.arop_summary_iters[i])
val_summarys.append(val_summary)
if writer is not None:
writer.add_summary(val_metric_summary, np_global_step)
# Return the additional val_ops
total_loss = (val_additional_ops, val_summarys)
should_stop = None
return total_loss, should_stop
def train_step_custom_v2(sess, train_op, global_step, train_step_kwargs,
mode='train'):
m = train_step_kwargs['m']
obj = train_step_kwargs['obj']
rng = train_step_kwargs['rng']
writer = train_step_kwargs['writer']
iters = train_step_kwargs['iters']
logdir = train_step_kwargs['logdir']
train_display_interval = train_step_kwargs['train_display_interval']
s_ops = m.summary_ops[mode]
val_additional_ops = []
# Print all variables here.
if False:
v = tf.get_collection(tf.GraphKeys.VARIABLES)
v_op = [_.value() for _ in v]
v_op_value = sess.run(v_op)
filter = lambda x, y: 'Adam' in x.name
# filter = lambda x, y: np.is_any_nan(y)
ind = [i for i, (_, __) in enumerate(zip(v, v_op_value)) if filter(_, __)]
v = [v[i] for i in ind]
v_op_value = [v_op_value[i] for i in ind]
for i in range(len(v)):
logging.info('XXXX: variable: %30s, is_any_nan: %5s, norm: %f.',
v[i].name, np.any(np.isnan(v_op_value[i])),
np.linalg.norm(v_op_value[i]))
tt = utils.Timer()
for i in range(iters):
tt.tic()
e = obj.sample_env(rng)
rngs = e.gen_rng(rng)
input_data = e.gen_data(*rngs)
input_data = e.pre_data(input_data)
feed_dict = prepare_feed_dict(m.input_tensors, input_data)
if mode == 'train':
n_step = sess.run(global_step)
if np.mod(n_step, train_display_interval) == 0:
total_loss, np_global_step, summary, print_summary = sess.run(
[train_op, global_step, s_ops.summary_ops, s_ops.print_summary_ops],
feed_dict=feed_dict)
else:
total_loss, np_global_step, summary = sess.run(
[train_op, global_step, s_ops.summary_ops],
feed_dict=feed_dict)
if writer is not None and summary is not None:
writer.add_summary(summary, np_global_step)
should_stop = sess.run(m.should_stop_op)
if mode != 'train':
arop = [[] for j in range(len(s_ops.additional_return_ops))]
for j in range(len(s_ops.additional_return_ops)):
if s_ops.arop_summary_iters[j] < 0 or i < s_ops.arop_summary_iters[j]:
arop[j] = s_ops.additional_return_ops[j]
val = sess.run(arop, feed_dict=feed_dict)
val_additional_ops.append(val)
tt.toc(log_at=60, log_str='val timer {:d} / {:d}: '.format(i, iters),
type='time')
if mode != 'train':
# Write the default val summaries.
summary, print_summary, np_global_step = sess.run(
[s_ops.summary_ops, s_ops.print_summary_ops, global_step])
if writer is not None and summary is not None:
writer.add_summary(summary, np_global_step)
# write custom validation ops
val_summarys = []
val_additional_ops = zip(*val_additional_ops)
if len(s_ops.arop_eval_fns) > 0:
val_metric_summary = tf.summary.Summary()
for i in range(len(s_ops.arop_eval_fns)):
val_summary = None
if s_ops.arop_eval_fns[i] is not None:
val_summary = s_ops.arop_eval_fns[i](val_additional_ops[i],
np_global_step, logdir,
val_metric_summary,
s_ops.arop_summary_iters[i])
val_summarys.append(val_summary)
if writer is not None:
writer.add_summary(val_metric_summary, np_global_step)
# Return the additional val_ops
total_loss = (val_additional_ops, val_summarys)
should_stop = None
return total_loss, should_stop
def train_step_custom(sess, train_op, global_step, train_step_kwargs,
mode='train'):
m = train_step_kwargs['m']
params = train_step_kwargs['params']
rng = train_step_kwargs['rng']
writer = train_step_kwargs['writer']
iters = train_step_kwargs['iters']
gen_rng = train_step_kwargs['gen_rng']
logdir = train_step_kwargs['logdir']
gen_data = train_step_kwargs['gen_data']
pre_data = train_step_kwargs['pre_data']
train_display_interval = train_step_kwargs['train_display_interval']
val_additional_ops = []
# Print all variables here.
if False:
v = tf.get_collection(tf.GraphKeys.VARIABLES)
for _ in v:
val = sess.run(_.value())
logging.info('variable: %30s, is_any_nan: %5s, norm: %f.', _.name,
np.any(np.isnan(val)), np.linalg.norm(val))
for i in range(iters):
rngs = gen_rng(params, rng)
input_data = gen_data(params, *rngs)
input_data = pre_data(params, input_data)
feed_dict = prepare_feed_dict(m.input_tensors, input_data)
if mode == 'train':
n_step = sess.run(global_step)
if np.mod(n_step, train_display_interval) == 0:
total_loss, np_global_step, summary, print_summary = sess.run(
[train_op, global_step, m.summary_op[mode], m.print_summary_op[mode]],
feed_dict=feed_dict)
else:
total_loss, np_global_step, summary = sess.run(
[train_op, global_step, m.summary_op[mode]],
feed_dict=feed_dict)
if writer is not None:
writer.add_summary(summary, np_global_step)
should_stop = sess.run(m.should_stop_op)
if mode == 'val':
val = sess.run(m.agg_update_op[mode] + m.additional_return_op[mode],
feed_dict=feed_dict)
val_additional_ops.append(val[len(m.agg_update_op[mode]):])
if mode == 'val':
summary, print_summary, np_global_step = sess.run(
[m.summary_op[mode], m.print_summary_op[mode], global_step])
if writer is not None:
writer.add_summary(summary, np_global_step)
sess.run([m.agg_reset_op[mode]])
# write custom validation ops
if m.eval_metrics_fn[mode] is not None:
val_metric_summary = m.eval_metrics_fn[mode](val_additional_ops,
np_global_step, logdir)
if writer is not None:
writer.add_summary(val_metric_summary, np_global_step)
total_loss = val_additional_ops
should_stop = None
return total_loss, should_stop
def setup_training(loss_op, initial_learning_rate, steps_per_decay,
learning_rate_decay, momentum, max_steps,
sync=False, adjust_lr_sync=True,
num_workers=1, replica_id=0, vars_to_optimize=None,
clip_gradient_norm=0, typ=None, momentum2=0.999,
adam_eps=1e-8):
if sync and adjust_lr_sync:
initial_learning_rate = initial_learning_rate * num_workers
max_steps = np.int(max_steps / num_workers)
steps_per_decay = np.int(steps_per_decay / num_workers)
global_step_op = slim.get_or_create_global_step()
lr_op = tf.train.exponential_decay(initial_learning_rate,
global_step_op, steps_per_decay, learning_rate_decay, staircase=True)
if typ == 'sgd':
optimizer = tf.train.MomentumOptimizer(lr_op, momentum)
elif typ == 'adam':
optimizer = tf.train.AdamOptimizer(learning_rate=lr_op, beta1=momentum,
beta2=momentum2, epsilon=adam_eps)
if sync:
sync_optimizer = tf.train.SyncReplicasOptimizer(optimizer,
replicas_to_aggregate=num_workers,
replica_id=replica_id,
total_num_replicas=num_workers)
train_op = slim.learning.create_train_op(loss_op, sync_optimizer,
variables_to_train=vars_to_optimize,
clip_gradient_norm=clip_gradient_norm)
else:
sync_optimizer = None
train_op = slim.learning.create_train_op(loss_op, optimizer,
variables_to_train=vars_to_optimize,
clip_gradient_norm=clip_gradient_norm)
should_stop_op = tf.greater_equal(global_step_op, max_steps)
return lr_op, global_step_op, train_op, should_stop_op, optimizer, sync_optimizer
def add_value_to_summary(metric_summary, tag, val, log=True, tag_str=None):
"""Adds a scalar summary to the summary object. Optionally also logs to
logging."""
new_value = metric_summary.value.add();
new_value.tag = tag
new_value.simple_value = val
if log:
if tag_str is None:
tag_str = tag + '%f'
logging.info(tag_str, val)
def add_scalar_summary_op(tensor, name=None,
summary_key='summaries', print_summary_key='print_summaries', prefix=''):
collections = []
op = tf.summary.scalar(name, tensor, collections=collections)
if summary_key != print_summary_key:
tf.add_to_collection(summary_key, op)
op = tf.Print(op, [tensor], ' {:-<25s}: '.format(name) + prefix)
tf.add_to_collection(print_summary_key, op)
return op
def setup_inputs(inputs):
input_tensors = {}
input_shapes = {}
for (name, typ, sz) in inputs:
_ = tf.placeholder(typ, shape=sz, name=name)
input_tensors[name] = _
input_shapes[name] = sz
return input_tensors, input_shapes
def prepare_feed_dict(input_tensors, inputs):
feed_dict = {}
for n in input_tensors.keys():
feed_dict[input_tensors[n]] = inputs[n].astype(input_tensors[n].dtype.as_numpy_dtype)
return feed_dict
def simple_add_summaries(summarize_ops, summarize_names,
summary_key='summaries',
print_summary_key='print_summaries', prefix=''):
for op, name, in zip(summarize_ops, summarize_names):
add_scalar_summary_op(op, name, summary_key, print_summary_key, prefix)
summary_op = tf.summary.merge_all(summary_key)
print_summary_op = tf.summary.merge_all(print_summary_key)
return summary_op, print_summary_op
def add_summary_ops(m, summarize_ops, summarize_names, to_aggregate=None,
summary_key='summaries',
print_summary_key='print_summaries', prefix=''):
if type(to_aggregate) != list:
to_aggregate = [to_aggregate for _ in summarize_ops]
# set up aggregating metrics
if np.any(to_aggregate):
agg_ops = []
for op, name, to_agg in zip(summarize_ops, summarize_names, to_aggregate):
if to_agg:
# agg_ops.append(slim.metrics.streaming_mean(op, return_reset_op=True))
agg_ops.append(tf.contrib.metrics.streaming_mean(op))
# agg_ops.append(tf.contrib.metrics.streaming_mean(op, return_reset_op=True))
else:
agg_ops.append([None, None, None])
# agg_values_op, agg_update_op, agg_reset_op = zip(*agg_ops)
# agg_update_op = [x for x in agg_update_op if x is not None]
# agg_reset_op = [x for x in agg_reset_op if x is not None]
agg_values_op, agg_update_op = zip(*agg_ops)
agg_update_op = [x for x in agg_update_op if x is not None]
agg_reset_op = [tf.no_op()]
else:
agg_values_op = [None for _ in to_aggregate]
agg_update_op = [tf.no_op()]
agg_reset_op = [tf.no_op()]
for op, name, to_agg, agg_op in zip(summarize_ops, summarize_names, to_aggregate, agg_values_op):
if to_agg:
add_scalar_summary_op(agg_op, name, summary_key, print_summary_key, prefix)
else:
add_scalar_summary_op(op, name, summary_key, print_summary_key, prefix)
summary_op = tf.summary.merge_all(summary_key)
print_summary_op = tf.summary.merge_all(print_summary_key)
return summary_op, print_summary_op, agg_update_op, agg_reset_op
def accum_val_ops(outputs, names, global_step, output_dir, metric_summary, N):
"""Processes the collected outputs to compute AP for action prediction.
Args:
outputs : List of scalar ops to summarize.
names : Name of the scalar ops.
global_step : global_step.
output_dir : where to store results.
metric_summary : summary object to add summaries to.
N : number of outputs to process.
"""
outs = []
if N >= 0:
outputs = outputs[:N]
for i in range(len(outputs[0])):
scalar = np.array(map(lambda x: x[i], outputs))
assert(scalar.ndim == 1)
add_value_to_summary(metric_summary, names[i], np.mean(scalar),
tag_str='{:>27s}: [{:s}]: %f'.format(names[i], ''))
outs.append(np.mean(scalar))
return outs
def get_default_summary_ops():
return utils.Foo(summary_ops=None, print_summary_ops=None,
additional_return_ops=[], arop_summary_iters=[],
arop_eval_fns=[])
def simple_summaries(summarize_ops, summarize_names, mode, to_aggregate=False,
scope_name='summary'):
if type(to_aggregate) != list:
to_aggregate = [to_aggregate for _ in summarize_ops]
summary_key = '{:s}_summaries'.format(mode)
print_summary_key = '{:s}_print_summaries'.format(mode)
prefix=' [{:s}]: '.format(mode)
# Default ops for things that dont need to be aggregated.
if not np.all(to_aggregate):
for op, name, to_agg in zip(summarize_ops, summarize_names, to_aggregate):
if not to_agg:
add_scalar_summary_op(op, name, summary_key, print_summary_key, prefix)
summary_ops = tf.summary.merge_all(summary_key)
print_summary_ops = tf.summary.merge_all(print_summary_key)
else:
summary_ops = tf.no_op()
print_summary_ops = tf.no_op()
# Default ops for things that dont need to be aggregated.
if np.any(to_aggregate):
additional_return_ops = [[summarize_ops[i]
for i, x in enumerate(to_aggregate )if x]]
arop_summary_iters = [-1]
s_names = ['{:s}/{:s}'.format(scope_name, summarize_names[i])
for i, x in enumerate(to_aggregate) if x]
fn = lambda outputs, global_step, output_dir, metric_summary, N: \
accum_val_ops(outputs, s_names, global_step, output_dir, metric_summary,
N)
arop_eval_fns = [fn]
else:
additional_return_ops = []
arop_summary_iters = []
arop_eval_fns = []
return summary_ops, print_summary_ops, additional_return_ops, \
arop_summary_iters, arop_eval_fns
|