File size: 33,781 Bytes
0b8359d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
# Copyright 2016 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

import numpy as np
import sys
import tensorflow as tf
import src.utils as utils
import logging
from tensorflow.contrib import slim
from tensorflow.contrib.metrics.python.ops import confusion_matrix_ops
from tensorflow.contrib.slim import arg_scope
from tensorflow.contrib.slim.nets import resnet_v2
from tensorflow.python.framework import dtypes
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import check_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import variable_scope
sys.path.insert(0, '../slim')
from preprocessing import inception_preprocessing as ip

resnet_v2_50 = resnet_v2.resnet_v2_50


def custom_residual_block(x, neurons, kernel_size, stride, name, is_training,
                          wt_decay=0.0001, use_residual=True,
                          residual_stride_conv=True, conv_fn=slim.conv2d,
                          batch_norm_param=None):
  
  # batch norm x and relu
  init_var = np.sqrt(2.0/(kernel_size**2)/neurons)
  with arg_scope([conv_fn], 
                 weights_regularizer=slim.l2_regularizer(wt_decay),
                 weights_initializer=tf.random_normal_initializer(stddev=init_var),
                 biases_initializer=tf.zeros_initializer()): 
    
    if batch_norm_param is None:
      batch_norm_param = {'center': True, 'scale': False, 
                          'activation_fn':tf.nn.relu, 
                          'is_training': is_training}
    
    y = slim.batch_norm(x, scope=name+'_bn', **batch_norm_param)

    y = conv_fn(y, num_outputs=neurons, kernel_size=kernel_size, stride=stride,
                activation_fn=None, scope=name+'_1',
                normalizer_fn=slim.batch_norm,
                normalizer_params=batch_norm_param)
    
    y = conv_fn(y, num_outputs=neurons, kernel_size=kernel_size,
                    stride=1, activation_fn=None, scope=name+'_2')

    if use_residual:
      if stride != 1 or x.get_shape().as_list()[-1] != neurons:
        batch_norm_param_ = dict(batch_norm_param)
        batch_norm_param_['activation_fn'] = None
        x = conv_fn(x, num_outputs=neurons, kernel_size=1,
                        stride=stride if residual_stride_conv else 1,
                        activation_fn=None, scope=name+'_0_1x1',
                        normalizer_fn=slim.batch_norm,
                        normalizer_params=batch_norm_param_)
        if not residual_stride_conv:
          x = slim.avg_pool2d(x, 1, stride=stride, scope=name+'_0_avg')
  
      y = tf.add(x, y, name=name+'_add')
    
    return y

def step_gt_prob(step, step_number_op):
  # Change samping probability from 1 to -1 at step steps.
  with tf.name_scope('step_gt_prob'):
    out = tf.cond(tf.less(step_number_op, step),
            lambda: tf.constant(1.), lambda: tf.constant(-1.))
    return out 

def inverse_sigmoid_decay(k, global_step_op):
  with tf.name_scope('inverse_sigmoid_decay'):
    k = tf.constant(k, dtype=tf.float32)
    tmp = k*tf.exp(-tf.cast(global_step_op, tf.float32)/k)
    tmp = tmp / (1. + tmp)
  return tmp

def dense_resample(im, flow_im, output_valid_mask, name='dense_resample'):
  """ Resample reward at particular locations.
  Args:
    im:      ...xHxWxC matrix to sample from.
    flow_im: ...xHxWx2 matrix, samples the image using absolute offsets as given
             by the flow_im.
  """
  with tf.name_scope(name):
    valid_mask = None
    
    x, y = tf.unstack(flow_im, axis=-1)
    x = tf.cast(tf.reshape(x, [-1]), tf.float32)
    y = tf.cast(tf.reshape(y, [-1]), tf.float32)

    # constants
    shape = tf.unstack(tf.shape(im))
    channels = shape[-1]
    width = shape[-2]
    height = shape[-3]
    num_batch = tf.cast(tf.reduce_prod(tf.stack(shape[:-3])), 'int32')
    zero = tf.constant(0, dtype=tf.int32)

    # Round up and down.
    x0 = tf.cast(tf.floor(x), 'int32'); x1 = x0 + 1;
    y0 = tf.cast(tf.floor(y), 'int32'); y1 = y0 + 1;
    
    if output_valid_mask:
      valid_mask = tf.logical_and(
          tf.logical_and(tf.less_equal(x, tf.cast(width, tf.float32)-1.), tf.greater_equal(x, 0.)),
          tf.logical_and(tf.less_equal(y, tf.cast(height, tf.float32)-1.), tf.greater_equal(y, 0.)))
      valid_mask = tf.reshape(valid_mask, shape=shape[:-1] + [1])
  
    x0 = tf.clip_by_value(x0, zero, width-1)
    x1 = tf.clip_by_value(x1, zero, width-1)
    y0 = tf.clip_by_value(y0, zero, height-1)
    y1 = tf.clip_by_value(y1, zero, height-1)

    dim2 = width; dim1 = width * height;

    # Create base index
    base = tf.reshape(tf.range(num_batch) * dim1, shape=[-1,1])
    base = tf.reshape(tf.tile(base, [1, height*width]), shape=[-1])

    base_y0 = base + y0 * dim2
    base_y1 = base + y1 * dim2
    idx_a = base_y0 + x0
    idx_b = base_y1 + x0
    idx_c = base_y0 + x1
    idx_d = base_y1 + x1

    # use indices to lookup pixels in the flat image and restore channels dim
    sh = tf.stack([tf.constant(-1,dtype=tf.int32), channels])
    im_flat = tf.cast(tf.reshape(im, sh), dtype=tf.float32)
    pixel_a = tf.gather(im_flat, idx_a)
    pixel_b = tf.gather(im_flat, idx_b)
    pixel_c = tf.gather(im_flat, idx_c)
    pixel_d = tf.gather(im_flat, idx_d)

    # and finally calculate interpolated values
    x1_f = tf.to_float(x1)
    y1_f = tf.to_float(y1)

    wa = tf.expand_dims(((x1_f - x) * (y1_f - y)), 1)
    wb = tf.expand_dims((x1_f - x) * (1.0 - (y1_f - y)), 1)
    wc = tf.expand_dims(((1.0 - (x1_f - x)) * (y1_f - y)), 1)
    wd = tf.expand_dims(((1.0 - (x1_f - x)) * (1.0 - (y1_f - y))), 1)

    output = tf.add_n([wa * pixel_a, wb * pixel_b, wc * pixel_c, wd * pixel_d])
    output = tf.reshape(output, shape=tf.shape(im))
    return output, valid_mask
 
def get_flow(t, theta, map_size, name_scope='gen_flow'):
  """
  Rotates the map by theta and translates the rotated map by t.
  
  Assume that the robot rotates by an angle theta and then moves forward by
  translation t. This function returns the flow field field. For every pixel in
  the new image it tells us which pixel in the original image it came from:
  NewI(x, y) = OldI(flow_x(x,y), flow_y(x,y)).

  Assume there is a point p in the original image. Robot rotates by R and moves
  forward by t.  p1 = Rt*p; p2 = p1 - t; (the world moves in opposite direction.
  So, p2 = Rt*p - t, thus p2 came from R*(p2+t), which is what this function
  calculates.

    t:      ... x 2 (translation for B batches of N motions each).
    theta:  ... x 1 (rotation for B batches of N motions each).
    
    Output: ... x map_size x map_size x 2
  """

  with tf.name_scope(name_scope):
    tx, ty = tf.unstack(tf.reshape(t, shape=[-1, 1, 1, 1, 2]), axis=4)
    theta = tf.reshape(theta, shape=[-1, 1, 1, 1])
    c = tf.constant((map_size-1.)/2., dtype=tf.float32)

    x, y = np.meshgrid(np.arange(map_size), np.arange(map_size))
    x = tf.constant(x[np.newaxis, :, :, np.newaxis], dtype=tf.float32, name='x', 
                    shape=[1, map_size, map_size, 1])
    y = tf.constant(y[np.newaxis, :, :, np.newaxis], dtype=tf.float32, name='y',
                    shape=[1,map_size, map_size, 1])

    x = x-(-tx+c)
    y = y-(-ty+c)

    sin_theta = tf.sin(theta)
    cos_theta = tf.cos(theta)
    xr = cos_theta*x - sin_theta*y
    yr = sin_theta*x + cos_theta*y

    xr = xr + c
    yr = yr + c
    
    flow = tf.stack([xr, yr], axis=-1)
    sh = tf.unstack(tf.shape(t), axis=0)
    sh = tf.stack(sh[:-1]+[tf.constant(_, dtype=tf.int32) for _ in [map_size, map_size, 2]])
    flow = tf.reshape(flow, shape=sh)
    return flow

def distort_image(im, fast_mode=False):
  # All images in the same batch are transformed the same way, but over
  # iterations you see different distortions.
  # im should be float with values between 0 and 1.
  im_ = tf.reshape(im, shape=(-1,1,3))
  im_ = ip.apply_with_random_selector(
      im_, lambda x, ordering: ip.distort_color(x, ordering, fast_mode),
      num_cases=4)
  im_ = tf.reshape(im_, tf.shape(im))
  return im_

def fc_network(x, neurons, wt_decay, name, num_pred=None, offset=0,
               batch_norm_param=None, dropout_ratio=0.0, is_training=None): 
  if dropout_ratio > 0:
    assert(is_training is not None), \
      'is_training needs to be defined when trainnig with dropout.'
  
  repr = []
  for i, neuron in enumerate(neurons):
    init_var = np.sqrt(2.0/neuron)
    if batch_norm_param is not None:
      x = slim.fully_connected(x, neuron, activation_fn=None,
                               weights_initializer=tf.random_normal_initializer(stddev=init_var),
                               weights_regularizer=slim.l2_regularizer(wt_decay),
                               normalizer_fn=slim.batch_norm,
                               normalizer_params=batch_norm_param,
                               biases_initializer=tf.zeros_initializer(),
                               scope='{:s}_{:d}'.format(name, offset+i))
    else:
      x = slim.fully_connected(x, neuron, activation_fn=tf.nn.relu,
                               weights_initializer=tf.random_normal_initializer(stddev=init_var),
                               weights_regularizer=slim.l2_regularizer(wt_decay),
                               biases_initializer=tf.zeros_initializer(),
                               scope='{:s}_{:d}'.format(name, offset+i))
    if dropout_ratio > 0:
       x = slim.dropout(x, keep_prob=1-dropout_ratio, is_training=is_training,
                        scope='{:s}_{:d}'.format('dropout_'+name, offset+i))
    repr.append(x)
  
  if num_pred is not None:
    init_var = np.sqrt(2.0/num_pred)
    x = slim.fully_connected(x, num_pred,
                             weights_regularizer=slim.l2_regularizer(wt_decay),
                             weights_initializer=tf.random_normal_initializer(stddev=init_var),
                             biases_initializer=tf.zeros_initializer(),
                             activation_fn=None,
                             scope='{:s}_pred'.format(name))
  return x, repr

def concat_state_x_list(f, names):
  af = {}
  for i, k in enumerate(names):
    af[k] = np.concatenate([x[i] for x in f], axis=1)
  return af

def concat_state_x(f, names):
  af = {}
  for k in names:
    af[k] = np.concatenate([x[k] for x in f], axis=1)
    # af[k] = np.swapaxes(af[k], 0, 1)
  return af

def sample_action(rng, action_probs, optimal_action, sample_gt_prob,
                  type='sample', combine_type='one_or_other'):
  optimal_action_ = optimal_action/np.sum(optimal_action+0., 1, keepdims=True)
  action_probs_ = action_probs/np.sum(action_probs+0.001, 1, keepdims=True)
  batch_size = action_probs_.shape[0]

  action = np.zeros((batch_size), dtype=np.int32)
  action_sample_wt = np.zeros((batch_size), dtype=np.float32)
  if combine_type == 'add':
    sample_gt_prob_ = np.minimum(np.maximum(sample_gt_prob, 0.), 1.)

  for i in range(batch_size):
    if combine_type == 'one_or_other':
      sample_gt = rng.rand() < sample_gt_prob
      if sample_gt: distr_ = optimal_action_[i,:]*1.
      else: distr_ = action_probs_[i,:]*1.
    elif combine_type == 'add':
      distr_ = optimal_action_[i,:]*sample_gt_prob_ + \
          (1.-sample_gt_prob_)*action_probs_[i,:]
      distr_ = distr_ / np.sum(distr_)

    if type == 'sample':
      action[i] = np.argmax(rng.multinomial(1, distr_, size=1))
    elif type == 'argmax':
      action[i] = np.argmax(distr_)
    action_sample_wt[i] = action_probs_[i, action[i]] / distr_[action[i]]
  return action, action_sample_wt

def train_step_custom_online_sampling(sess, train_op, global_step,
                                      train_step_kwargs, mode='train'):
  m          = train_step_kwargs['m']
  obj        = train_step_kwargs['obj']
  rng_data   = train_step_kwargs['rng_data']
  rng_action = train_step_kwargs['rng_action']
  writer     = train_step_kwargs['writer']
  iters      = train_step_kwargs['iters']
  num_steps  = train_step_kwargs['num_steps']
  logdir     = train_step_kwargs['logdir']
  dagger_sample_bn_false = train_step_kwargs['dagger_sample_bn_false']
  train_display_interval = train_step_kwargs['train_display_interval']
  if 'outputs' not in m.train_ops:
    m.train_ops['outputs'] = []

  s_ops = m.summary_ops[mode]
  val_additional_ops = []

  # Print all variables here.
  if False:
    v = tf.get_collection(tf.GraphKeys.VARIABLES)
    v_op = [_.value() for _ in v]
    v_op_value = sess.run(v_op)

    filter = lambda x, y: 'Adam' in x.name
    # filter = lambda x, y: np.is_any_nan(y)
    ind = [i for i, (_, __) in enumerate(zip(v, v_op_value)) if filter(_, __)]
    v = [v[i] for i in ind]
    v_op_value = [v_op_value[i] for i in ind]

    for i in range(len(v)): 
      logging.info('XXXX: variable: %30s, is_any_nan: %5s, norm: %f.',
                   v[i].name, np.any(np.isnan(v_op_value[i])),
                   np.linalg.norm(v_op_value[i]))

  tt = utils.Timer()
  for i in range(iters):
    tt.tic()
    # Sample a room.
    e = obj.sample_env(rng_data)

    # Initialize the agent.
    init_env_state = e.reset(rng_data)

    # Get and process the common data.
    input = e.get_common_data()
    input = e.pre_common_data(input)
    feed_dict  = prepare_feed_dict(m.input_tensors['common'], input)
    if dagger_sample_bn_false:
      feed_dict[m.train_ops['batch_norm_is_training_op']] = False
    common_data = sess.run(m.train_ops['common'], feed_dict=feed_dict)

    states = []
    state_features = []
    state_targets = []
    net_state_to_input = []
    step_data_cache = []
    executed_actions = []
    rewards = []
    action_sample_wts = []
    states.append(init_env_state)

    net_state = sess.run(m.train_ops['init_state'], feed_dict=feed_dict)
    net_state = dict(zip(m.train_ops['state_names'], net_state))
    net_state_to_input.append(net_state)
    for j in range(num_steps):
      f = e.get_features(states[j], j)
      f = e.pre_features(f)
      f.update(net_state)
      f['step_number'] = np.ones((1,1,1), dtype=np.int32)*j
      state_features.append(f)

      feed_dict = prepare_feed_dict(m.input_tensors['step'], state_features[-1])
      optimal_action = e.get_optimal_action(states[j], j)
      for x, v in zip(m.train_ops['common'], common_data):
        feed_dict[x] = v
      if dagger_sample_bn_false:
        feed_dict[m.train_ops['batch_norm_is_training_op']] = False
      outs = sess.run([m.train_ops['step'], m.sample_gt_prob_op,
                       m.train_ops['step_data_cache'],
                       m.train_ops['updated_state'],
                       m.train_ops['outputs']], feed_dict=feed_dict)
      action_probs = outs[0]
      sample_gt_prob = outs[1]
      step_data_cache.append(dict(zip(m.train_ops['step_data_cache'], outs[2])))
      net_state = outs[3]
      if hasattr(e, 'update_state'):
        outputs = outs[4]
        outputs = dict(zip(m.train_ops['output_names'], outputs))
        e.update_state(outputs, j)
      state_targets.append(e.get_targets(states[j], j))

      if j < num_steps-1:
        # Sample from action_probs and optimal action.
        action, action_sample_wt = sample_action(
            rng_action, action_probs, optimal_action, sample_gt_prob,
            m.sample_action_type, m.sample_action_combine_type)
        next_state, reward = e.take_action(states[j], action, j)
        executed_actions.append(action)
        states.append(next_state)
        rewards.append(reward)
        action_sample_wts.append(action_sample_wt)
        net_state = dict(zip(m.train_ops['state_names'], net_state))
        net_state_to_input.append(net_state)
    
    # Concatenate things together for training.
    rewards = np.array(rewards).T
    action_sample_wts = np.array(action_sample_wts).T
    executed_actions = np.array(executed_actions).T
    all_state_targets = concat_state_x(state_targets, e.get_targets_name())
    all_state_features = concat_state_x(state_features,
                                        e.get_features_name()+['step_number'])
    # all_state_net = concat_state_x(net_state_to_input,
    # m.train_ops['state_names'])
    all_step_data_cache = concat_state_x(step_data_cache,
                                         m.train_ops['step_data_cache'])

    dict_train = dict(input)
    dict_train.update(all_state_features)
    dict_train.update(all_state_targets)
    # dict_train.update(all_state_net)
    dict_train.update(net_state_to_input[0])
    dict_train.update(all_step_data_cache)
    dict_train.update({'rewards': rewards, 
                       'action_sample_wts': action_sample_wts,
                       'executed_actions': executed_actions})
    feed_dict = prepare_feed_dict(m.input_tensors['train'], dict_train)
    for x in m.train_ops['step_data_cache']:
      feed_dict[x] = all_step_data_cache[x]
    if mode == 'train':
      n_step = sess.run(global_step)

      if np.mod(n_step, train_display_interval) == 0:
        total_loss, np_global_step, summary, print_summary = sess.run(
            [train_op, global_step, s_ops.summary_ops, s_ops.print_summary_ops],
            feed_dict=feed_dict)
        logging.error("")
      else:
        total_loss, np_global_step, summary = sess.run(
            [train_op, global_step, s_ops.summary_ops], feed_dict=feed_dict)

      if writer is not None and summary is not None:
        writer.add_summary(summary, np_global_step)

      should_stop = sess.run(m.should_stop_op)

    if mode != 'train':
      arop = [[] for j in range(len(s_ops.additional_return_ops))]
      for j in range(len(s_ops.additional_return_ops)):
        if s_ops.arop_summary_iters[j] < 0 or i < s_ops.arop_summary_iters[j]:
          arop[j] = s_ops.additional_return_ops[j]
      val = sess.run(arop, feed_dict=feed_dict)
      val_additional_ops.append(val)
      tt.toc(log_at=60, log_str='val timer {:d} / {:d}: '.format(i, iters), 
             type='time')

  if mode != 'train':
    # Write the default val summaries.
    summary, print_summary, np_global_step = sess.run(
        [s_ops.summary_ops, s_ops.print_summary_ops, global_step]) 
    if writer is not None and summary is not None:
      writer.add_summary(summary, np_global_step)

    # write custom validation ops
    val_summarys = []
    val_additional_ops = zip(*val_additional_ops)
    if len(s_ops.arop_eval_fns) > 0:
      val_metric_summary = tf.summary.Summary()
      for i in range(len(s_ops.arop_eval_fns)):
        val_summary = None
        if s_ops.arop_eval_fns[i] is not None:
          val_summary = s_ops.arop_eval_fns[i](val_additional_ops[i],
                                               np_global_step, logdir,
                                               val_metric_summary,
                                               s_ops.arop_summary_iters[i])
        val_summarys.append(val_summary)
      if writer is not None:
        writer.add_summary(val_metric_summary, np_global_step)

    # Return the additional val_ops
    total_loss = (val_additional_ops, val_summarys)
    should_stop = None
  
  return total_loss, should_stop

def train_step_custom_v2(sess, train_op, global_step, train_step_kwargs,
                         mode='train'):
  m      = train_step_kwargs['m']
  obj    = train_step_kwargs['obj']
  rng    = train_step_kwargs['rng']
  writer = train_step_kwargs['writer']
  iters  = train_step_kwargs['iters']
  logdir = train_step_kwargs['logdir']
  train_display_interval = train_step_kwargs['train_display_interval']

  s_ops = m.summary_ops[mode]
  val_additional_ops = [] 

  # Print all variables here.
  if False:
    v = tf.get_collection(tf.GraphKeys.VARIABLES)
    v_op = [_.value() for _ in v]
    v_op_value = sess.run(v_op)

    filter = lambda x, y: 'Adam' in x.name
    # filter = lambda x, y: np.is_any_nan(y)
    ind = [i for i, (_, __) in enumerate(zip(v, v_op_value)) if filter(_, __)]
    v = [v[i] for i in ind]
    v_op_value = [v_op_value[i] for i in ind]

    for i in range(len(v)): 
      logging.info('XXXX: variable: %30s, is_any_nan: %5s, norm: %f.',
                   v[i].name, np.any(np.isnan(v_op_value[i])),
                   np.linalg.norm(v_op_value[i]))

  tt = utils.Timer()
  for i in range(iters):
    tt.tic()
    e          = obj.sample_env(rng)
    rngs       = e.gen_rng(rng)
    input_data = e.gen_data(*rngs)
    input_data = e.pre_data(input_data)
    feed_dict  = prepare_feed_dict(m.input_tensors, input_data)

    if mode == 'train':
      n_step = sess.run(global_step)

      if np.mod(n_step, train_display_interval) == 0:
        total_loss, np_global_step, summary, print_summary = sess.run(
            [train_op, global_step, s_ops.summary_ops, s_ops.print_summary_ops], 
            feed_dict=feed_dict)
      else:
        total_loss, np_global_step, summary = sess.run(
            [train_op, global_step, s_ops.summary_ops],
            feed_dict=feed_dict)

      if writer is not None and summary is not None:
        writer.add_summary(summary, np_global_step)

      should_stop = sess.run(m.should_stop_op)

    if mode != 'train':
      arop = [[] for j in range(len(s_ops.additional_return_ops))]
      for j in range(len(s_ops.additional_return_ops)):
        if s_ops.arop_summary_iters[j] < 0 or i < s_ops.arop_summary_iters[j]:
          arop[j] = s_ops.additional_return_ops[j]
      val = sess.run(arop, feed_dict=feed_dict)
      val_additional_ops.append(val)
      tt.toc(log_at=60, log_str='val timer {:d} / {:d}: '.format(i, iters), 
             type='time')

  if mode != 'train':
    # Write the default val summaries.
    summary, print_summary, np_global_step = sess.run(
        [s_ops.summary_ops, s_ops.print_summary_ops, global_step]) 
    if writer is not None and summary is not None:
      writer.add_summary(summary, np_global_step)

    # write custom validation ops
    val_summarys = []
    val_additional_ops = zip(*val_additional_ops)
    if len(s_ops.arop_eval_fns) > 0:
      val_metric_summary = tf.summary.Summary()
      for i in range(len(s_ops.arop_eval_fns)):
        val_summary = None
        if s_ops.arop_eval_fns[i] is not None:
          val_summary = s_ops.arop_eval_fns[i](val_additional_ops[i],
                                               np_global_step, logdir,
                                               val_metric_summary,
                                               s_ops.arop_summary_iters[i])
        val_summarys.append(val_summary)
      if writer is not None:
        writer.add_summary(val_metric_summary, np_global_step)

    # Return the additional val_ops
    total_loss = (val_additional_ops, val_summarys)
    should_stop = None

  return total_loss, should_stop

def train_step_custom(sess, train_op, global_step, train_step_kwargs, 
                      mode='train'):
  m        = train_step_kwargs['m']
  params   = train_step_kwargs['params']
  rng      = train_step_kwargs['rng']
  writer   = train_step_kwargs['writer']
  iters    = train_step_kwargs['iters']
  gen_rng  = train_step_kwargs['gen_rng']
  logdir   = train_step_kwargs['logdir']
  gen_data = train_step_kwargs['gen_data']
  pre_data = train_step_kwargs['pre_data']
  train_display_interval = train_step_kwargs['train_display_interval']
  
  val_additional_ops = [] 
  # Print all variables here.
  if False:
    v = tf.get_collection(tf.GraphKeys.VARIABLES)
    for _ in v: 
      val = sess.run(_.value())
      logging.info('variable: %30s, is_any_nan: %5s, norm: %f.', _.name,
                   np.any(np.isnan(val)), np.linalg.norm(val))

  for i in range(iters):
    rngs       = gen_rng(params, rng)
    input_data = gen_data(params, *rngs)
    input_data = pre_data(params, input_data)
    feed_dict  = prepare_feed_dict(m.input_tensors, input_data)
    
    if mode == 'train':
      n_step = sess.run(global_step)
      
      if np.mod(n_step, train_display_interval) == 0:
        total_loss, np_global_step, summary, print_summary = sess.run(
            [train_op, global_step, m.summary_op[mode], m.print_summary_op[mode]], 
            feed_dict=feed_dict)
      else:
        total_loss, np_global_step, summary = sess.run(
            [train_op, global_step, m.summary_op[mode]],
            feed_dict=feed_dict)

      if writer is not None:
        writer.add_summary(summary, np_global_step)
        
      should_stop = sess.run(m.should_stop_op)
    
    if mode == 'val':
      val = sess.run(m.agg_update_op[mode] + m.additional_return_op[mode], 
                     feed_dict=feed_dict)
      val_additional_ops.append(val[len(m.agg_update_op[mode]):])
  
  if mode == 'val':
    summary, print_summary, np_global_step = sess.run(
        [m.summary_op[mode], m.print_summary_op[mode], global_step]) 
    if writer is not None:
      writer.add_summary(summary, np_global_step)
    sess.run([m.agg_reset_op[mode]])
    
    # write custom validation ops
    if m.eval_metrics_fn[mode] is not None:
      val_metric_summary = m.eval_metrics_fn[mode](val_additional_ops,
                                                   np_global_step, logdir)
      if writer is not None:
        writer.add_summary(val_metric_summary, np_global_step)
    
    total_loss = val_additional_ops
    should_stop = None
    
  return total_loss, should_stop

def setup_training(loss_op, initial_learning_rate, steps_per_decay,
                   learning_rate_decay, momentum, max_steps,
                   sync=False, adjust_lr_sync=True,
                   num_workers=1, replica_id=0, vars_to_optimize=None, 
                   clip_gradient_norm=0, typ=None, momentum2=0.999,
                   adam_eps=1e-8):
  if sync and adjust_lr_sync:
    initial_learning_rate = initial_learning_rate * num_workers
    max_steps = np.int(max_steps / num_workers)
    steps_per_decay = np.int(steps_per_decay / num_workers)

  global_step_op = slim.get_or_create_global_step()
  lr_op          = tf.train.exponential_decay(initial_learning_rate,
    global_step_op, steps_per_decay, learning_rate_decay, staircase=True)
  if typ == 'sgd':
    optimizer      = tf.train.MomentumOptimizer(lr_op, momentum)
  elif typ == 'adam':
    optimizer      = tf.train.AdamOptimizer(learning_rate=lr_op, beta1=momentum,
                                            beta2=momentum2, epsilon=adam_eps)
  
  if sync:
    
    sync_optimizer = tf.train.SyncReplicasOptimizer(optimizer, 
                                               replicas_to_aggregate=num_workers, 
                                               replica_id=replica_id, 
                                               total_num_replicas=num_workers)
    train_op       = slim.learning.create_train_op(loss_op, sync_optimizer,
                                                   variables_to_train=vars_to_optimize,
                                                   clip_gradient_norm=clip_gradient_norm)
  else:
    sync_optimizer = None
    train_op       = slim.learning.create_train_op(loss_op, optimizer,
                                                   variables_to_train=vars_to_optimize,
                                                   clip_gradient_norm=clip_gradient_norm)
    should_stop_op = tf.greater_equal(global_step_op, max_steps)
  return lr_op, global_step_op, train_op, should_stop_op, optimizer, sync_optimizer

def add_value_to_summary(metric_summary, tag, val, log=True, tag_str=None):
  """Adds a scalar summary to the summary object. Optionally also logs to
  logging."""
  new_value = metric_summary.value.add();
  new_value.tag = tag
  new_value.simple_value = val
  if log:
    if tag_str is None:
      tag_str = tag + '%f'
    logging.info(tag_str, val)

def add_scalar_summary_op(tensor, name=None, 
    summary_key='summaries', print_summary_key='print_summaries', prefix=''):
  collections = []
  op = tf.summary.scalar(name, tensor, collections=collections)
  if summary_key != print_summary_key:
    tf.add_to_collection(summary_key, op)
  
  op = tf.Print(op, [tensor], '    {:-<25s}: '.format(name) + prefix)
  tf.add_to_collection(print_summary_key, op)
  return op

def setup_inputs(inputs):
  input_tensors = {}
  input_shapes  = {}
  for (name, typ, sz) in inputs:
    _ = tf.placeholder(typ, shape=sz, name=name)
    input_tensors[name] = _
    input_shapes[name]  = sz
  return input_tensors, input_shapes

def prepare_feed_dict(input_tensors, inputs):
  feed_dict = {}
  for n in input_tensors.keys():
    feed_dict[input_tensors[n]] = inputs[n].astype(input_tensors[n].dtype.as_numpy_dtype)
  return feed_dict

def simple_add_summaries(summarize_ops, summarize_names,
                         summary_key='summaries',
                         print_summary_key='print_summaries', prefix=''):
  for op, name, in zip(summarize_ops, summarize_names):
    add_scalar_summary_op(op, name, summary_key, print_summary_key, prefix)

  summary_op       = tf.summary.merge_all(summary_key)
  print_summary_op = tf.summary.merge_all(print_summary_key)
  return summary_op, print_summary_op

def add_summary_ops(m, summarize_ops, summarize_names, to_aggregate=None,
                    summary_key='summaries',
                    print_summary_key='print_summaries', prefix=''):
  if type(to_aggregate) != list:
    to_aggregate = [to_aggregate for _ in summarize_ops]
  
  # set up aggregating metrics
  if np.any(to_aggregate):
    agg_ops = []
    for op, name, to_agg in zip(summarize_ops, summarize_names, to_aggregate):
      if to_agg:
        # agg_ops.append(slim.metrics.streaming_mean(op, return_reset_op=True))
        agg_ops.append(tf.contrib.metrics.streaming_mean(op))
        # agg_ops.append(tf.contrib.metrics.streaming_mean(op, return_reset_op=True))
      else:
        agg_ops.append([None, None, None])

    # agg_values_op, agg_update_op, agg_reset_op = zip(*agg_ops)
    # agg_update_op = [x for x in agg_update_op if x is not None]
    # agg_reset_op = [x for x in agg_reset_op if x is not None]
    agg_values_op, agg_update_op = zip(*agg_ops)
    agg_update_op = [x for x in agg_update_op if x is not None]
    agg_reset_op  = [tf.no_op()]
  else:
    agg_values_op = [None for _ in to_aggregate]
    agg_update_op = [tf.no_op()]
    agg_reset_op  = [tf.no_op()]

  for op, name, to_agg, agg_op in zip(summarize_ops, summarize_names, to_aggregate, agg_values_op):
    if to_agg:
      add_scalar_summary_op(agg_op, name, summary_key, print_summary_key, prefix)
    else:
      add_scalar_summary_op(op, name, summary_key, print_summary_key, prefix)

  summary_op       = tf.summary.merge_all(summary_key)
  print_summary_op = tf.summary.merge_all(print_summary_key)
  return summary_op, print_summary_op, agg_update_op, agg_reset_op



def accum_val_ops(outputs, names, global_step, output_dir, metric_summary, N):
  """Processes the collected outputs to compute AP for action prediction.
  
  Args:
    outputs        : List of scalar ops to summarize.
    names          : Name of the scalar ops.
    global_step    : global_step.
    output_dir     : where to store results.
    metric_summary : summary object to add summaries to.
    N              : number of outputs to process.
  """
  outs = []
  if N >= 0:
    outputs = outputs[:N]
  for i in range(len(outputs[0])):
    scalar = np.array(map(lambda x: x[i], outputs))
    assert(scalar.ndim == 1)
    add_value_to_summary(metric_summary, names[i], np.mean(scalar),
                         tag_str='{:>27s}:  [{:s}]: %f'.format(names[i], ''))
    outs.append(np.mean(scalar))
  return outs

def get_default_summary_ops():
  return utils.Foo(summary_ops=None, print_summary_ops=None, 
                   additional_return_ops=[], arop_summary_iters=[],
                   arop_eval_fns=[])


def simple_summaries(summarize_ops, summarize_names, mode, to_aggregate=False,
                     scope_name='summary'):

  if type(to_aggregate) != list:
    to_aggregate = [to_aggregate for _ in summarize_ops]
  
  summary_key = '{:s}_summaries'.format(mode)
  print_summary_key = '{:s}_print_summaries'.format(mode)
  prefix=' [{:s}]: '.format(mode)
  
  # Default ops for things that dont need to be aggregated.
  if not np.all(to_aggregate):
    for op, name, to_agg in zip(summarize_ops, summarize_names, to_aggregate):
      if not to_agg:
        add_scalar_summary_op(op, name, summary_key, print_summary_key, prefix)
    summary_ops = tf.summary.merge_all(summary_key)
    print_summary_ops = tf.summary.merge_all(print_summary_key)
  else:
    summary_ops = tf.no_op()
    print_summary_ops = tf.no_op()
 
  # Default ops for things that dont need to be aggregated.
  if np.any(to_aggregate):
    additional_return_ops = [[summarize_ops[i] 
                              for i, x in enumerate(to_aggregate )if x]]
    arop_summary_iters = [-1]
    s_names = ['{:s}/{:s}'.format(scope_name, summarize_names[i]) 
               for i, x in enumerate(to_aggregate) if x]
    fn = lambda outputs, global_step, output_dir, metric_summary, N: \
      accum_val_ops(outputs, s_names, global_step, output_dir, metric_summary,
                    N)
    arop_eval_fns = [fn]
  else:
    additional_return_ops = []
    arop_summary_iters = []
    arop_eval_fns = []
  return summary_ops, print_summary_ops, additional_return_ops, \
    arop_summary_iters, arop_eval_fns