Spaces:
Running
Running
File size: 8,338 Bytes
0b8359d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
# Copyright 2016 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Code for setting up summaries for CMP.
"""
import sys, os, numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.contrib import slim
from tensorflow.contrib.slim import arg_scope
import logging
from tensorflow.python.platform import app
from tensorflow.python.platform import flags
from src import utils
import src.file_utils as fu
import tfcode.nav_utils as nu
def _vis_readout_maps(outputs, global_step, output_dir, metric_summary, N):
# outputs is [gt_map, pred_map]:
if N >= 0:
outputs = outputs[:N]
N = len(outputs)
plt.set_cmap('jet')
fig, axes = utils.subplot(plt, (N, outputs[0][0].shape[4]*2), (5,5))
axes = axes.ravel()[::-1].tolist()
for i in range(N):
gt_map, pred_map = outputs[i]
for j in [0]:
for k in range(gt_map.shape[4]):
# Display something like the midpoint of the trajectory.
id = np.int(gt_map.shape[1]/2)
ax = axes.pop();
ax.imshow(gt_map[j,id,:,:,k], origin='lower', interpolation='none',
vmin=0., vmax=1.)
ax.set_axis_off();
if i == 0: ax.set_title('gt_map')
ax = axes.pop();
ax.imshow(pred_map[j,id,:,:,k], origin='lower', interpolation='none',
vmin=0., vmax=1.)
ax.set_axis_off();
if i == 0: ax.set_title('pred_map')
file_name = os.path.join(output_dir, 'readout_map_{:d}.png'.format(global_step))
with fu.fopen(file_name, 'w') as f:
fig.savefig(f, bbox_inches='tight', transparent=True, pad_inches=0)
plt.close(fig)
def _vis(outputs, global_step, output_dir, metric_summary, N):
# Plot the value map, goal for various maps to see what if the model is
# learning anything useful.
#
# outputs is [values, goals, maps, occupancy, conf].
#
if N >= 0:
outputs = outputs[:N]
N = len(outputs)
plt.set_cmap('jet')
fig, axes = utils.subplot(plt, (N, outputs[0][0].shape[4]*5), (5,5))
axes = axes.ravel()[::-1].tolist()
for i in range(N):
values, goals, maps, occupancy, conf = outputs[i]
for j in [0]:
for k in range(values.shape[4]):
# Display something like the midpoint of the trajectory.
id = np.int(values.shape[1]/2)
ax = axes.pop();
ax.imshow(goals[j,id,:,:,k], origin='lower', interpolation='none')
ax.set_axis_off();
if i == 0: ax.set_title('goal')
ax = axes.pop();
ax.imshow(occupancy[j,id,:,:,k], origin='lower', interpolation='none')
ax.set_axis_off();
if i == 0: ax.set_title('occupancy')
ax = axes.pop();
ax.imshow(conf[j,id,:,:,k], origin='lower', interpolation='none',
vmin=0., vmax=1.)
ax.set_axis_off();
if i == 0: ax.set_title('conf')
ax = axes.pop();
ax.imshow(values[j,id,:,:,k], origin='lower', interpolation='none')
ax.set_axis_off();
if i == 0: ax.set_title('value')
ax = axes.pop();
ax.imshow(maps[j,id,:,:,k], origin='lower', interpolation='none')
ax.set_axis_off();
if i == 0: ax.set_title('incr map')
file_name = os.path.join(output_dir, 'value_vis_{:d}.png'.format(global_step))
with fu.fopen(file_name, 'w') as f:
fig.savefig(f, bbox_inches='tight', transparent=True, pad_inches=0)
plt.close(fig)
def _summary_vis(m, batch_size, num_steps, arop_full_summary_iters):
arop = []; arop_summary_iters = []; arop_eval_fns = [];
vis_value_ops = []; vis_goal_ops = []; vis_map_ops = [];
vis_occupancy_ops = []; vis_conf_ops = [];
for i, val_op in enumerate(m.value_ops):
vis_value_op = tf.reduce_mean(tf.abs(val_op), axis=3, keep_dims=True)
vis_value_ops.append(vis_value_op)
vis_occupancy_op = tf.reduce_mean(tf.abs(m.occupancys[i]), 3, True)
vis_occupancy_ops.append(vis_occupancy_op)
vis_conf_op = tf.reduce_max(tf.abs(m.confs[i]), axis=3, keep_dims=True)
vis_conf_ops.append(vis_conf_op)
ego_goal_imgs_i_op = m.input_tensors['step']['ego_goal_imgs_{:d}'.format(i)]
vis_goal_op = tf.reduce_max(ego_goal_imgs_i_op, 4, True)
vis_goal_ops.append(vis_goal_op)
vis_map_op = tf.reduce_mean(tf.abs(m.ego_map_ops[i]), 4, True)
vis_map_ops.append(vis_map_op)
vis_goal_ops = tf.concat(vis_goal_ops, 4)
vis_map_ops = tf.concat(vis_map_ops, 4)
vis_value_ops = tf.concat(vis_value_ops, 3)
vis_occupancy_ops = tf.concat(vis_occupancy_ops, 3)
vis_conf_ops = tf.concat(vis_conf_ops, 3)
sh = tf.unstack(tf.shape(vis_value_ops))[1:]
vis_value_ops = tf.reshape(vis_value_ops, shape=[batch_size, -1] + sh)
sh = tf.unstack(tf.shape(vis_conf_ops))[1:]
vis_conf_ops = tf.reshape(vis_conf_ops, shape=[batch_size, -1] + sh)
sh = tf.unstack(tf.shape(vis_occupancy_ops))[1:]
vis_occupancy_ops = tf.reshape(vis_occupancy_ops, shape=[batch_size,-1] + sh)
# Save memory, only return time steps that need to be visualized, factor of
# 32 CPU memory saving.
id = np.int(num_steps/2)
vis_goal_ops = tf.expand_dims(vis_goal_ops[:,id,:,:,:], axis=1)
vis_map_ops = tf.expand_dims(vis_map_ops[:,id,:,:,:], axis=1)
vis_value_ops = tf.expand_dims(vis_value_ops[:,id,:,:,:], axis=1)
vis_conf_ops = tf.expand_dims(vis_conf_ops[:,id,:,:,:], axis=1)
vis_occupancy_ops = tf.expand_dims(vis_occupancy_ops[:,id,:,:,:], axis=1)
arop += [[vis_value_ops, vis_goal_ops, vis_map_ops, vis_occupancy_ops,
vis_conf_ops]]
arop_summary_iters += [arop_full_summary_iters]
arop_eval_fns += [_vis]
return arop, arop_summary_iters, arop_eval_fns
def _summary_readout_maps(m, num_steps, arop_full_summary_iters):
arop = []; arop_summary_iters = []; arop_eval_fns = [];
id = np.int(num_steps-1)
vis_readout_maps_gt = m.readout_maps_gt
vis_readout_maps_prob = tf.reshape(m.readout_maps_probs,
shape=tf.shape(vis_readout_maps_gt))
vis_readout_maps_gt = tf.expand_dims(vis_readout_maps_gt[:,id,:,:,:], 1)
vis_readout_maps_prob = tf.expand_dims(vis_readout_maps_prob[:,id,:,:,:], 1)
arop += [[vis_readout_maps_gt, vis_readout_maps_prob]]
arop_summary_iters += [arop_full_summary_iters]
arop_eval_fns += [_vis_readout_maps]
return arop, arop_summary_iters, arop_eval_fns
def _add_summaries(m, args, summary_mode, arop_full_summary_iters):
task_params = args.navtask.task_params
summarize_ops = [m.lr_op, m.global_step_op, m.sample_gt_prob_op] + \
m.loss_ops + m.acc_ops
summarize_names = ['lr', 'global_step', 'sample_gt_prob_op'] + \
m.loss_ops_names + ['acc_{:d}'.format(i) for i in range(len(m.acc_ops))]
to_aggregate = [0, 0, 0] + [1]*len(m.loss_ops_names) + [1]*len(m.acc_ops)
scope_name = 'summary'
with tf.name_scope(scope_name):
s_ops = nu.add_default_summaries(summary_mode, arop_full_summary_iters,
summarize_ops, summarize_names,
to_aggregate, m.action_prob_op,
m.input_tensors, scope_name=scope_name)
if summary_mode == 'val':
arop, arop_summary_iters, arop_eval_fns = _summary_vis(
m, task_params.batch_size, task_params.num_steps,
arop_full_summary_iters)
s_ops.additional_return_ops += arop
s_ops.arop_summary_iters += arop_summary_iters
s_ops.arop_eval_fns += arop_eval_fns
if args.arch.readout_maps:
arop, arop_summary_iters, arop_eval_fns = _summary_readout_maps(
m, task_params.num_steps, arop_full_summary_iters)
s_ops.additional_return_ops += arop
s_ops.arop_summary_iters += arop_summary_iters
s_ops.arop_eval_fns += arop_eval_fns
return s_ops
|