Spaces:
Running
Running
File size: 24,415 Bytes
0b8359d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 |
# Copyright 2016 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Code for setting up the network for CMP.
Sets up the mapper and the planner.
"""
import sys, os, numpy as np
import matplotlib.pyplot as plt
import copy
import argparse, pprint
import time
import tensorflow as tf
from tensorflow.contrib import slim
from tensorflow.contrib.slim import arg_scope
import logging
from tensorflow.python.platform import app
from tensorflow.python.platform import flags
from src import utils
import src.file_utils as fu
import tfcode.nav_utils as nu
import tfcode.cmp_utils as cu
import tfcode.cmp_summary as cmp_s
from tfcode import tf_utils
value_iteration_network = cu.value_iteration_network
rotate_preds = cu.rotate_preds
deconv = cu.deconv
get_visual_frustum = cu.get_visual_frustum
fr_v2 = cu.fr_v2
setup_train_step_kwargs = nu.default_train_step_kwargs
compute_losses_multi_or = nu.compute_losses_multi_or
get_repr_from_image = nu.get_repr_from_image
_save_d_at_t = nu.save_d_at_t
_save_all = nu.save_all
_eval_ap = nu.eval_ap
_eval_dist = nu.eval_dist
_plot_trajectories = nu.plot_trajectories
_vis_readout_maps = cmp_s._vis_readout_maps
_vis = cmp_s._vis
_summary_vis = cmp_s._summary_vis
_summary_readout_maps = cmp_s._summary_readout_maps
_add_summaries = cmp_s._add_summaries
def _inputs(problem):
# Set up inputs.
with tf.name_scope('inputs'):
inputs = []
inputs.append(('orig_maps', tf.float32,
(problem.batch_size, 1, None, None, 1)))
inputs.append(('goal_loc', tf.float32,
(problem.batch_size, problem.num_goals, 2)))
common_input_data, _ = tf_utils.setup_inputs(inputs)
inputs = []
if problem.input_type == 'vision':
# Multiple images from an array of cameras.
inputs.append(('imgs', tf.float32,
(problem.batch_size, None, len(problem.aux_delta_thetas)+1,
problem.img_height, problem.img_width,
problem.img_channels)))
elif problem.input_type == 'analytical_counts':
for i in range(len(problem.map_crop_sizes)):
inputs.append(('analytical_counts_{:d}'.format(i), tf.float32,
(problem.batch_size, None, problem.map_crop_sizes[i],
problem.map_crop_sizes[i], problem.map_channels)))
if problem.outputs.readout_maps:
for i in range(len(problem.readout_maps_crop_sizes)):
inputs.append(('readout_maps_{:d}'.format(i), tf.float32,
(problem.batch_size, None,
problem.readout_maps_crop_sizes[i],
problem.readout_maps_crop_sizes[i],
problem.readout_maps_channels)))
for i in range(len(problem.map_crop_sizes)):
inputs.append(('ego_goal_imgs_{:d}'.format(i), tf.float32,
(problem.batch_size, None, problem.map_crop_sizes[i],
problem.map_crop_sizes[i], problem.goal_channels)))
for s in ['sum_num', 'sum_denom', 'max_denom']:
inputs.append(('running_'+s+'_{:d}'.format(i), tf.float32,
(problem.batch_size, 1, problem.map_crop_sizes[i],
problem.map_crop_sizes[i], problem.map_channels)))
inputs.append(('incremental_locs', tf.float32,
(problem.batch_size, None, 2)))
inputs.append(('incremental_thetas', tf.float32,
(problem.batch_size, None, 1)))
inputs.append(('step_number', tf.int32, (1, None, 1)))
inputs.append(('node_ids', tf.int32, (problem.batch_size, None,
problem.node_ids_dim)))
inputs.append(('perturbs', tf.float32, (problem.batch_size, None,
problem.perturbs_dim)))
# For plotting result plots
inputs.append(('loc_on_map', tf.float32, (problem.batch_size, None, 2)))
inputs.append(('gt_dist_to_goal', tf.float32, (problem.batch_size, None, 1)))
step_input_data, _ = tf_utils.setup_inputs(inputs)
inputs = []
inputs.append(('action', tf.int32, (problem.batch_size, None, problem.num_actions)))
train_data, _ = tf_utils.setup_inputs(inputs)
train_data.update(step_input_data)
train_data.update(common_input_data)
return common_input_data, step_input_data, train_data
def readout_general(multi_scale_belief, num_neurons, strides, layers_per_block,
kernel_size, batch_norm_is_training_op, wt_decay):
multi_scale_belief = tf.stop_gradient(multi_scale_belief)
with tf.variable_scope('readout_maps_deconv'):
x, outs = deconv(multi_scale_belief, batch_norm_is_training_op,
wt_decay=wt_decay, neurons=num_neurons, strides=strides,
layers_per_block=layers_per_block, kernel_size=kernel_size,
conv_fn=slim.conv2d_transpose, offset=0,
name='readout_maps_deconv')
probs = tf.sigmoid(x)
return x, probs
def running_combine(fss_logits, confs_probs, incremental_locs,
incremental_thetas, previous_sum_num, previous_sum_denom,
previous_max_denom, map_size, num_steps):
# fss_logits is B x N x H x W x C
# confs_logits is B x N x H x W x C
# incremental_locs is B x N x 2
# incremental_thetas is B x N x 1
# previous_sum_num etc is B x 1 x H x W x C
with tf.name_scope('combine_{:d}'.format(num_steps)):
running_sum_nums_ = []; running_sum_denoms_ = [];
running_max_denoms_ = [];
fss_logits_ = tf.unstack(fss_logits, axis=1, num=num_steps)
confs_probs_ = tf.unstack(confs_probs, axis=1, num=num_steps)
incremental_locs_ = tf.unstack(incremental_locs, axis=1, num=num_steps)
incremental_thetas_ = tf.unstack(incremental_thetas, axis=1, num=num_steps)
running_sum_num = tf.unstack(previous_sum_num, axis=1, num=1)[0]
running_sum_denom = tf.unstack(previous_sum_denom, axis=1, num=1)[0]
running_max_denom = tf.unstack(previous_max_denom, axis=1, num=1)[0]
for i in range(num_steps):
# Rotate the previous running_num and running_denom
running_sum_num, running_sum_denom, running_max_denom = rotate_preds(
incremental_locs_[i], incremental_thetas_[i], map_size,
[running_sum_num, running_sum_denom, running_max_denom],
output_valid_mask=False)[0]
# print i, num_steps, running_sum_num.get_shape().as_list()
running_sum_num = running_sum_num + fss_logits_[i] * confs_probs_[i]
running_sum_denom = running_sum_denom + confs_probs_[i]
running_max_denom = tf.maximum(running_max_denom, confs_probs_[i])
running_sum_nums_.append(running_sum_num)
running_sum_denoms_.append(running_sum_denom)
running_max_denoms_.append(running_max_denom)
running_sum_nums = tf.stack(running_sum_nums_, axis=1)
running_sum_denoms = tf.stack(running_sum_denoms_, axis=1)
running_max_denoms = tf.stack(running_max_denoms_, axis=1)
return running_sum_nums, running_sum_denoms, running_max_denoms
def get_map_from_images(imgs, mapper_arch, task_params, freeze_conv, wt_decay,
is_training, batch_norm_is_training_op, num_maps,
split_maps=True):
# Hit image with a resnet.
n_views = len(task_params.aux_delta_thetas) + 1
out = utils.Foo()
images_reshaped = tf.reshape(imgs,
shape=[-1, task_params.img_height,
task_params.img_width,
task_params.img_channels], name='re_image')
x, out.vars_to_restore = get_repr_from_image(
images_reshaped, task_params.modalities, task_params.data_augment,
mapper_arch.encoder, freeze_conv, wt_decay, is_training)
# Reshape into nice things so that these can be accumulated over time steps
# for faster backprop.
sh_before = x.get_shape().as_list()
out.encoder_output = tf.reshape(x, shape=[task_params.batch_size, -1, n_views] + sh_before[1:])
x = tf.reshape(out.encoder_output, shape=[-1] + sh_before[1:])
# Add a layer to reduce dimensions for a fc layer.
if mapper_arch.dim_reduce_neurons > 0:
ks = 1; neurons = mapper_arch.dim_reduce_neurons;
init_var = np.sqrt(2.0/(ks**2)/neurons)
batch_norm_param = mapper_arch.batch_norm_param
batch_norm_param['is_training'] = batch_norm_is_training_op
out.conv_feat = slim.conv2d(x, neurons, kernel_size=ks, stride=1,
normalizer_fn=slim.batch_norm, normalizer_params=batch_norm_param,
padding='SAME', scope='dim_reduce',
weights_regularizer=slim.l2_regularizer(wt_decay),
weights_initializer=tf.random_normal_initializer(stddev=init_var))
reshape_conv_feat = slim.flatten(out.conv_feat)
sh = reshape_conv_feat.get_shape().as_list()
out.reshape_conv_feat = tf.reshape(reshape_conv_feat, shape=[-1, sh[1]*n_views])
with tf.variable_scope('fc'):
# Fully connected layers to compute the representation in top-view space.
fc_batch_norm_param = {'center': True, 'scale': True,
'activation_fn':tf.nn.relu,
'is_training': batch_norm_is_training_op}
f = out.reshape_conv_feat
out_neurons = (mapper_arch.fc_out_size**2)*mapper_arch.fc_out_neurons
neurons = mapper_arch.fc_neurons + [out_neurons]
f, _ = tf_utils.fc_network(f, neurons=neurons, wt_decay=wt_decay,
name='fc', offset=0,
batch_norm_param=fc_batch_norm_param,
is_training=is_training,
dropout_ratio=mapper_arch.fc_dropout)
f = tf.reshape(f, shape=[-1, mapper_arch.fc_out_size,
mapper_arch.fc_out_size,
mapper_arch.fc_out_neurons], name='re_fc')
# Use pool5 to predict the free space map via deconv layers.
with tf.variable_scope('deconv'):
x, outs = deconv(f, batch_norm_is_training_op, wt_decay=wt_decay,
neurons=mapper_arch.deconv_neurons,
strides=mapper_arch.deconv_strides,
layers_per_block=mapper_arch.deconv_layers_per_block,
kernel_size=mapper_arch.deconv_kernel_size,
conv_fn=slim.conv2d_transpose, offset=0, name='deconv')
# Reshape x the right way.
sh = x.get_shape().as_list()
x = tf.reshape(x, shape=[task_params.batch_size, -1] + sh[1:])
out.deconv_output = x
# Separate out the map and the confidence predictions, pass the confidence
# through a sigmoid.
if split_maps:
with tf.name_scope('split'):
out_all = tf.split(value=x, axis=4, num_or_size_splits=2*num_maps)
out.fss_logits = out_all[:num_maps]
out.confs_logits = out_all[num_maps:]
with tf.name_scope('sigmoid'):
out.confs_probs = [tf.nn.sigmoid(x) for x in out.confs_logits]
return out
def setup_to_run(m, args, is_training, batch_norm_is_training, summary_mode):
assert(args.arch.multi_scale), 'removed support for old single scale code.'
# Set up the model.
tf.set_random_seed(args.solver.seed)
task_params = args.navtask.task_params
batch_norm_is_training_op = \
tf.placeholder_with_default(batch_norm_is_training, shape=[],
name='batch_norm_is_training_op')
# Setup the inputs
m.input_tensors = {}
m.train_ops = {}
m.input_tensors['common'], m.input_tensors['step'], m.input_tensors['train'] = \
_inputs(task_params)
m.init_fn = None
if task_params.input_type == 'vision':
m.vision_ops = get_map_from_images(
m.input_tensors['step']['imgs'], args.mapper_arch,
task_params, args.solver.freeze_conv,
args.solver.wt_decay, is_training, batch_norm_is_training_op,
num_maps=len(task_params.map_crop_sizes))
# Load variables from snapshot if needed.
if args.solver.pretrained_path is not None:
m.init_fn = slim.assign_from_checkpoint_fn(args.solver.pretrained_path,
m.vision_ops.vars_to_restore)
# Set up caching of vision features if needed.
if args.solver.freeze_conv:
m.train_ops['step_data_cache'] = [m.vision_ops.encoder_output]
else:
m.train_ops['step_data_cache'] = []
# Set up blobs that are needed for the computation in rest of the graph.
m.ego_map_ops = m.vision_ops.fss_logits
m.coverage_ops = m.vision_ops.confs_probs
# Zero pad these to make them same size as what the planner expects.
for i in range(len(m.ego_map_ops)):
if args.mapper_arch.pad_map_with_zeros_each[i] > 0:
paddings = np.zeros((5,2), dtype=np.int32)
paddings[2:4,:] = args.mapper_arch.pad_map_with_zeros_each[i]
paddings_op = tf.constant(paddings, dtype=tf.int32)
m.ego_map_ops[i] = tf.pad(m.ego_map_ops[i], paddings=paddings_op)
m.coverage_ops[i] = tf.pad(m.coverage_ops[i], paddings=paddings_op)
elif task_params.input_type == 'analytical_counts':
m.ego_map_ops = []; m.coverage_ops = []
for i in range(len(task_params.map_crop_sizes)):
ego_map_op = m.input_tensors['step']['analytical_counts_{:d}'.format(i)]
coverage_op = tf.cast(tf.greater_equal(
tf.reduce_max(ego_map_op, reduction_indices=[4],
keep_dims=True), 1), tf.float32)
coverage_op = tf.ones_like(ego_map_op) * coverage_op
m.ego_map_ops.append(ego_map_op)
m.coverage_ops.append(coverage_op)
m.train_ops['step_data_cache'] = []
num_steps = task_params.num_steps
num_goals = task_params.num_goals
map_crop_size_ops = []
for map_crop_size in task_params.map_crop_sizes:
map_crop_size_ops.append(tf.constant(map_crop_size, dtype=tf.int32, shape=(2,)))
with tf.name_scope('check_size'):
is_single_step = tf.equal(tf.unstack(tf.shape(m.ego_map_ops[0]), num=5)[1], 1)
fr_ops = []; value_ops = [];
fr_intermediate_ops = []; value_intermediate_ops = [];
crop_value_ops = [];
resize_crop_value_ops = [];
confs = []; occupancys = [];
previous_value_op = None
updated_state = []; state_names = [];
for i in range(len(task_params.map_crop_sizes)):
map_crop_size = task_params.map_crop_sizes[i]
with tf.variable_scope('scale_{:d}'.format(i)):
# Accumulate the map.
fn = lambda ns: running_combine(
m.ego_map_ops[i],
m.coverage_ops[i],
m.input_tensors['step']['incremental_locs'] * task_params.map_scales[i],
m.input_tensors['step']['incremental_thetas'],
m.input_tensors['step']['running_sum_num_{:d}'.format(i)],
m.input_tensors['step']['running_sum_denom_{:d}'.format(i)],
m.input_tensors['step']['running_max_denom_{:d}'.format(i)],
map_crop_size, ns)
running_sum_num, running_sum_denom, running_max_denom = \
tf.cond(is_single_step, lambda: fn(1), lambda: fn(num_steps*num_goals))
updated_state += [running_sum_num, running_sum_denom, running_max_denom]
state_names += ['running_sum_num_{:d}'.format(i),
'running_sum_denom_{:d}'.format(i),
'running_max_denom_{:d}'.format(i)]
# Concat the accumulated map and goal
occupancy = running_sum_num / tf.maximum(running_sum_denom, 0.001)
conf = running_max_denom
# print occupancy.get_shape().as_list()
# Concat occupancy, how much occupied and goal.
with tf.name_scope('concat'):
sh = [-1, map_crop_size, map_crop_size, task_params.map_channels]
occupancy = tf.reshape(occupancy, shape=sh)
conf = tf.reshape(conf, shape=sh)
sh = [-1, map_crop_size, map_crop_size, task_params.goal_channels]
goal = tf.reshape(m.input_tensors['step']['ego_goal_imgs_{:d}'.format(i)], shape=sh)
to_concat = [occupancy, conf, goal]
if previous_value_op is not None:
to_concat.append(previous_value_op)
x = tf.concat(to_concat, 3)
# Pass the map, previous rewards and the goal through a few convolutional
# layers to get fR.
fr_op, fr_intermediate_op = fr_v2(
x, output_neurons=args.arch.fr_neurons,
inside_neurons=args.arch.fr_inside_neurons,
is_training=batch_norm_is_training_op, name='fr',
wt_decay=args.solver.wt_decay, stride=args.arch.fr_stride)
# Do Value Iteration on the fR
if args.arch.vin_num_iters > 0:
value_op, value_intermediate_op = value_iteration_network(
fr_op, num_iters=args.arch.vin_num_iters,
val_neurons=args.arch.vin_val_neurons,
action_neurons=args.arch.vin_action_neurons,
kernel_size=args.arch.vin_ks, share_wts=args.arch.vin_share_wts,
name='vin', wt_decay=args.solver.wt_decay)
else:
value_op = fr_op
value_intermediate_op = []
# Crop out and upsample the previous value map.
remove = args.arch.crop_remove_each
if remove > 0:
crop_value_op = value_op[:, remove:-remove, remove:-remove,:]
else:
crop_value_op = value_op
crop_value_op = tf.reshape(crop_value_op, shape=[-1, args.arch.value_crop_size,
args.arch.value_crop_size,
args.arch.vin_val_neurons])
if i < len(task_params.map_crop_sizes)-1:
# Reshape it to shape of the next scale.
previous_value_op = tf.image.resize_bilinear(crop_value_op,
map_crop_size_ops[i+1],
align_corners=True)
resize_crop_value_ops.append(previous_value_op)
occupancys.append(occupancy)
confs.append(conf)
value_ops.append(value_op)
crop_value_ops.append(crop_value_op)
fr_ops.append(fr_op)
fr_intermediate_ops.append(fr_intermediate_op)
m.value_ops = value_ops
m.value_intermediate_ops = value_intermediate_ops
m.fr_ops = fr_ops
m.fr_intermediate_ops = fr_intermediate_ops
m.final_value_op = crop_value_op
m.crop_value_ops = crop_value_ops
m.resize_crop_value_ops = resize_crop_value_ops
m.confs = confs
m.occupancys = occupancys
sh = [-1, args.arch.vin_val_neurons*((args.arch.value_crop_size)**2)]
m.value_features_op = tf.reshape(m.final_value_op, sh, name='reshape_value_op')
# Determine what action to take.
with tf.variable_scope('action_pred'):
batch_norm_param = args.arch.pred_batch_norm_param
if batch_norm_param is not None:
batch_norm_param['is_training'] = batch_norm_is_training_op
m.action_logits_op, _ = tf_utils.fc_network(
m.value_features_op, neurons=args.arch.pred_neurons,
wt_decay=args.solver.wt_decay, name='pred', offset=0,
num_pred=task_params.num_actions,
batch_norm_param=batch_norm_param)
m.action_prob_op = tf.nn.softmax(m.action_logits_op)
init_state = tf.constant(0., dtype=tf.float32, shape=[
task_params.batch_size, 1, map_crop_size, map_crop_size,
task_params.map_channels])
m.train_ops['state_names'] = state_names
m.train_ops['updated_state'] = updated_state
m.train_ops['init_state'] = [init_state for _ in updated_state]
m.train_ops['step'] = m.action_prob_op
m.train_ops['common'] = [m.input_tensors['common']['orig_maps'],
m.input_tensors['common']['goal_loc']]
m.train_ops['batch_norm_is_training_op'] = batch_norm_is_training_op
m.loss_ops = []; m.loss_ops_names = [];
if args.arch.readout_maps:
with tf.name_scope('readout_maps'):
all_occupancys = tf.concat(m.occupancys + m.confs, 3)
readout_maps, probs = readout_general(
all_occupancys, num_neurons=args.arch.rom_arch.num_neurons,
strides=args.arch.rom_arch.strides,
layers_per_block=args.arch.rom_arch.layers_per_block,
kernel_size=args.arch.rom_arch.kernel_size,
batch_norm_is_training_op=batch_norm_is_training_op,
wt_decay=args.solver.wt_decay)
gt_ego_maps = [m.input_tensors['step']['readout_maps_{:d}'.format(i)]
for i in range(len(task_params.readout_maps_crop_sizes))]
m.readout_maps_gt = tf.concat(gt_ego_maps, 4)
gt_shape = tf.shape(m.readout_maps_gt)
m.readout_maps_logits = tf.reshape(readout_maps, gt_shape)
m.readout_maps_probs = tf.reshape(probs, gt_shape)
# Add a loss op
m.readout_maps_loss_op = tf.losses.sigmoid_cross_entropy(
tf.reshape(m.readout_maps_gt, [-1, len(task_params.readout_maps_crop_sizes)]),
tf.reshape(readout_maps, [-1, len(task_params.readout_maps_crop_sizes)]),
scope='loss')
m.readout_maps_loss_op = 10.*m.readout_maps_loss_op
ewma_decay = 0.99 if is_training else 0.0
weight = tf.ones_like(m.input_tensors['train']['action'], dtype=tf.float32,
name='weight')
m.reg_loss_op, m.data_loss_op, m.total_loss_op, m.acc_ops = \
compute_losses_multi_or(m.action_logits_op,
m.input_tensors['train']['action'], weights=weight,
num_actions=task_params.num_actions,
data_loss_wt=args.solver.data_loss_wt,
reg_loss_wt=args.solver.reg_loss_wt,
ewma_decay=ewma_decay)
if args.arch.readout_maps:
m.total_loss_op = m.total_loss_op + m.readout_maps_loss_op
m.loss_ops += [m.readout_maps_loss_op]
m.loss_ops_names += ['readout_maps_loss']
m.loss_ops += [m.reg_loss_op, m.data_loss_op, m.total_loss_op]
m.loss_ops_names += ['reg_loss', 'data_loss', 'total_loss']
if args.solver.freeze_conv:
vars_to_optimize = list(set(tf.trainable_variables()) -
set(m.vision_ops.vars_to_restore))
else:
vars_to_optimize = None
m.lr_op, m.global_step_op, m.train_op, m.should_stop_op, m.optimizer, \
m.sync_optimizer = tf_utils.setup_training(
m.total_loss_op,
args.solver.initial_learning_rate,
args.solver.steps_per_decay,
args.solver.learning_rate_decay,
args.solver.momentum,
args.solver.max_steps,
args.solver.sync,
args.solver.adjust_lr_sync,
args.solver.num_workers,
args.solver.task,
vars_to_optimize=vars_to_optimize,
clip_gradient_norm=args.solver.clip_gradient_norm,
typ=args.solver.typ, momentum2=args.solver.momentum2,
adam_eps=args.solver.adam_eps)
if args.arch.sample_gt_prob_type == 'inverse_sigmoid_decay':
m.sample_gt_prob_op = tf_utils.inverse_sigmoid_decay(args.arch.isd_k,
m.global_step_op)
elif args.arch.sample_gt_prob_type == 'zero':
m.sample_gt_prob_op = tf.constant(-1.0, dtype=tf.float32)
elif args.arch.sample_gt_prob_type.split('_')[0] == 'step':
step = int(args.arch.sample_gt_prob_type.split('_')[1])
m.sample_gt_prob_op = tf_utils.step_gt_prob(
step, m.input_tensors['step']['step_number'][0,0,0])
m.sample_action_type = args.arch.action_sample_type
m.sample_action_combine_type = args.arch.action_sample_combine_type
m.summary_ops = {
summary_mode: _add_summaries(m, args, summary_mode,
args.summary.arop_full_summary_iters)}
m.init_op = tf.group(tf.global_variables_initializer(),
tf.local_variables_initializer())
m.saver_op = tf.train.Saver(keep_checkpoint_every_n_hours=4,
write_version=tf.train.SaverDef.V2)
return m
|