Spaces:
Running
Running
File size: 22,038 Bytes
0b8359d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 |
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Executes BERT SQuAD benchmarks and accuracy tests."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import json
import os
import time
# pylint: disable=g-bad-import-order
from absl import flags
from absl import logging
from absl.testing import flagsaver
import tensorflow as tf
# pylint: enable=g-bad-import-order
from official.benchmark import bert_benchmark_utils as benchmark_utils
from official.benchmark import owner_utils
from official.nlp.bert import run_squad
from official.utils.misc import distribution_utils
from official.utils.misc import keras_utils
from official.benchmark import benchmark_wrappers
# pylint: disable=line-too-long
PRETRAINED_CHECKPOINT_PATH = 'gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16/bert_model.ckpt'
SQUAD_TRAIN_DATA_PATH = 'gs://tf-perfzero-data/bert/squad/squad_train.tf_record'
SQUAD_PREDICT_FILE = 'gs://tf-perfzero-data/bert/squad/dev-v1.1.json'
SQUAD_VOCAB_FILE = 'gs://tf-perfzero-data/bert/squad/vocab.txt'
SQUAD_MEDIUM_INPUT_META_DATA_PATH = 'gs://tf-perfzero-data/bert/squad/squad_medium_meta_data'
SQUAD_LONG_INPUT_META_DATA_PATH = 'gs://tf-perfzero-data/bert/squad/squad_long_meta_data'
SQUAD_FULL_INPUT_META_DATA_PATH = 'gs://tf-perfzero-data/bert/squad/squad_full_meta_data'
MODEL_CONFIG_FILE_PATH = 'gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16/bert_config.json'
# pylint: enable=line-too-long
TMP_DIR = os.getenv('TMPDIR')
FLAGS = flags.FLAGS
class BertSquadBenchmarkBase(benchmark_utils.BertBenchmarkBase):
"""Base class to hold methods common to test classes in the module."""
def __init__(self, output_dir=None, tpu=None):
super(BertSquadBenchmarkBase, self).__init__(output_dir=output_dir, tpu=tpu)
def _read_training_summary_from_file(self):
"""Reads the training summary from a file."""
summary_path = os.path.join(FLAGS.model_dir,
'summaries/training_summary.txt')
with tf.io.gfile.GFile(summary_path, 'rb') as reader:
return json.loads(reader.read().decode('utf-8'))
def _read_input_meta_data_from_file(self):
"""Reads the input metadata from a file."""
with tf.io.gfile.GFile(FLAGS.input_meta_data_path, 'rb') as reader:
return json.loads(reader.read().decode('utf-8'))
def _get_distribution_strategy(self, ds_type='mirrored'):
"""Gets the distribution strategy.
Args:
ds_type: String, the distribution strategy type to be used. Can be
'mirrored', 'multi_worker_mirrored', 'tpu' and 'off'.
Returns:
A `tf.distribute.DistibutionStrategy` object.
"""
if self.tpu or ds_type == 'tpu':
return distribution_utils.get_distribution_strategy(
distribution_strategy='tpu', tpu_address=self.tpu)
elif ds_type == 'multi_worker_mirrored':
# Configures cluster spec for multi-worker distribution strategy.
_ = distribution_utils.configure_cluster(FLAGS.worker_hosts,
FLAGS.task_index)
return distribution_utils.get_distribution_strategy(
distribution_strategy=ds_type,
num_gpus=self.num_gpus,
all_reduce_alg=FLAGS.all_reduce_alg)
def _init_gpu_and_data_threads(self):
"""Set env variables before any TF calls."""
if FLAGS.tf_gpu_thread_mode:
keras_utils.set_gpu_thread_mode_and_count(
per_gpu_thread_count=FLAGS.per_gpu_thread_count,
gpu_thread_mode=FLAGS.tf_gpu_thread_mode,
num_gpus=self.num_gpus,
datasets_num_private_threads=FLAGS.datasets_num_private_threads)
@flagsaver.flagsaver
def _train_squad(self, run_eagerly=False, ds_type='mirrored'):
"""Runs BERT SQuAD training. Uses mirrored strategy by default."""
self._init_gpu_and_data_threads()
input_meta_data = self._read_input_meta_data_from_file()
strategy = self._get_distribution_strategy(ds_type)
run_squad.train_squad(
strategy=strategy,
input_meta_data=input_meta_data,
run_eagerly=run_eagerly,
custom_callbacks=[self.timer_callback])
@flagsaver.flagsaver
def _evaluate_squad(self, ds_type='mirrored'):
"""Runs BERT SQuAD evaluation. Uses mirrored strategy by default."""
self._init_gpu_and_data_threads()
input_meta_data = self._read_input_meta_data_from_file()
strategy = self._get_distribution_strategy(ds_type)
if input_meta_data.get('version_2_with_negative', False):
logging.error('In memory evaluation result for SQuAD v2 is not accurate')
eval_metrics = run_squad.eval_squad(strategy=strategy,
input_meta_data=input_meta_data)
# Use F1 score as reported evaluation metric.
self.eval_metrics = eval_metrics['final_f1']
class BertSquadBenchmarkReal(BertSquadBenchmarkBase):
"""Short benchmark performance tests for BERT SQuAD model.
Tests BERT SQuAD performance in different GPU configurations.
The naming convention of below test cases follow
`benchmark_(number of gpus)_gpu` format for GPUs and
`benchmark_(topology)_tpu` format for TPUs.
"""
def __init__(self, output_dir=TMP_DIR, tpu=None, **kwargs):
super(BertSquadBenchmarkReal, self).__init__(output_dir=output_dir, tpu=tpu)
def _setup(self):
"""Sets up the benchmark and SQuAD flags."""
super(BertSquadBenchmarkReal, self)._setup()
FLAGS.train_data_path = SQUAD_TRAIN_DATA_PATH
FLAGS.predict_file = SQUAD_PREDICT_FILE
FLAGS.vocab_file = SQUAD_VOCAB_FILE
FLAGS.bert_config_file = MODEL_CONFIG_FILE_PATH
FLAGS.num_train_epochs = 1
FLAGS.steps_per_loop = 100
@benchmark_wrappers.enable_runtime_flags
def _run_and_report_benchmark(self,
run_eagerly=False,
ds_type='mirrored'):
"""Runs the benchmark and reports various metrics."""
if FLAGS.train_batch_size <= 4 or run_eagerly:
FLAGS.input_meta_data_path = SQUAD_MEDIUM_INPUT_META_DATA_PATH
else:
FLAGS.input_meta_data_path = SQUAD_LONG_INPUT_META_DATA_PATH
start_time_sec = time.time()
self._train_squad(run_eagerly=run_eagerly, ds_type=ds_type)
wall_time_sec = time.time() - start_time_sec
summary = self._read_training_summary_from_file()
summary['start_time_sec'] = start_time_sec
super(BertSquadBenchmarkReal, self)._report_benchmark(
stats=summary,
wall_time_sec=wall_time_sec,
min_accuracy=0,
max_accuracy=1)
def benchmark_1_gpu(self):
"""Tests BERT SQuAD model performance with 1 GPU."""
self._setup()
self.num_gpus = 1
FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_squad')
FLAGS.train_batch_size = 4
self._run_and_report_benchmark()
def benchmark_1_gpu_eager(self):
"""Tests BERT SQuAD model performance with 1 GPU."""
self._setup()
self.num_gpus = 1
FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_squad_eager')
FLAGS.train_batch_size = 2
self._run_and_report_benchmark(run_eagerly=True)
def benchmark_1_gpu_xla(self):
"""Tests BERT SQuAD model performance with 1 GPU with XLA."""
self._setup()
self.num_gpus = 1
FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_xla_squad')
# XLA runs out of memory when running with batch size 4.
FLAGS.train_batch_size = 3
FLAGS.enable_xla = True
self._run_and_report_benchmark()
def benchmark_1_gpu_no_dist_strat(self):
"""Tests BERT SQuAD model performance with 1 GPU without DS."""
self._setup()
self.num_gpus = 1
FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_no_dist_strat_squad')
FLAGS.train_batch_size = 4
self._run_and_report_benchmark(ds_type='off')
def benchmark_1_gpu_eager_no_dist_strat(self):
"""Tests BERT SQuAD model performance with 1 GPU with eager execution."""
self._setup()
self.num_gpus = 1
FLAGS.model_dir = self._get_model_dir(
'benchmark_1_gpu_eager_no_dist_strat_squad')
FLAGS.train_batch_size = 4
self._run_and_report_benchmark(ds_type='off', run_eagerly=True)
@owner_utils.Owner('tf-model-garden')
def benchmark_8_gpu(self):
"""Tests BERT SQuAD model performance with 8 GPUs."""
self._setup()
self.num_gpus = 8
FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_squad')
FLAGS.train_batch_size = 24
FLAGS.tf_gpu_thread_mode = 'gpu_private'
self._run_and_report_benchmark()
def benchmark_1_gpu_fp16_eager(self):
"""Tests BERT SQuAD model performance with 1 GPU and FP16."""
self._setup()
self.num_gpus = 1
FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_squad_fp16_eager')
FLAGS.train_batch_size = 4
FLAGS.dtype = 'fp16'
FLAGS.loss_scale = 'dynamic'
self._run_and_report_benchmark(run_eagerly=True)
def benchmark_1_gpu_fp16(self):
"""Tests BERT SQuAD model performance with 1 GPU and FP16."""
self._setup()
self.num_gpus = 1
FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_squad_fp16')
FLAGS.train_batch_size = 4
FLAGS.dtype = 'fp16'
FLAGS.loss_scale = 'dynamic'
self._run_and_report_benchmark()
def benchmark_1_gpu_xla_fp16(self):
"""Tests BERT SQuAD model performance with 1 GPU with XLA and FP16."""
self._setup()
self.num_gpus = 1
FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_xla_squad_fp16')
FLAGS.train_batch_size = 4
FLAGS.enable_xla = True
FLAGS.dtype = 'fp16'
FLAGS.loss_scale = 'dynamic'
self._run_and_report_benchmark()
def benchmark_8_gpu_fp16(self):
"""Tests BERT SQuAD model performance with 8 GPUs."""
self._setup()
self.num_gpus = 8
FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_squad_fp16')
FLAGS.train_batch_size = 32
FLAGS.dtype = 'fp16'
FLAGS.loss_scale = 'dynamic'
FLAGS.tf_gpu_thread_mode = 'gpu_private'
self._run_and_report_benchmark()
def benchmark_8_gpu_xla_fp16(self):
"""Tests BERT SQuAD model performance with 8 GPUs with XLA."""
self._setup()
self.num_gpus = 8
FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_squad_fp16')
FLAGS.train_batch_size = 32
FLAGS.enable_xla = True
FLAGS.dtype = 'fp16'
FLAGS.loss_scale = 'dynamic'
self._run_and_report_benchmark()
def benchmark_1_gpu_amp(self):
"""Tests BERT SQuAD model performance with 1 GPU with automatic mixed precision."""
self._setup()
self.num_gpus = 1
FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_amp_squad')
FLAGS.train_batch_size = 4
FLAGS.dtype = 'fp16'
FLAGS.fp16_implementation = 'graph_rewrite'
self._run_and_report_benchmark()
def benchmark_8_gpu_amp(self):
"""Tests BERT SQuAD model performance with 1 GPU with automatic mixed precision."""
self._setup()
self.num_gpus = 8
FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_amp_squad')
FLAGS.train_batch_size = 32
FLAGS.dtype = 'fp16'
FLAGS.fp16_implementation = 'graph_rewrite'
FLAGS.tf_gpu_thread_mode = 'gpu_private'
self._run_and_report_benchmark()
@owner_utils.Owner('tf-model-garden')
def benchmark_2x2_tpu(self):
"""Tests BERT SQuAD model performance with 2x2 TPU."""
self._setup()
FLAGS.model_dir = self._get_model_dir('benchmark_2x2_tpu')
FLAGS.train_batch_size = 48
FLAGS.predict_batch_size = 48
FLAGS.mode = 'train'
FLAGS.learning_rate = 8e-5
FLAGS.num_train_epochs = 1
FLAGS.steps_per_loop = 100
FLAGS.do_lower_case = True
FLAGS.init_checkpoint = PRETRAINED_CHECKPOINT_PATH
self._run_and_report_benchmark()
class BertSquadAccuracy(BertSquadBenchmarkBase):
"""Short accuracy test for BERT SQuAD model.
Tests BERT SQuAD accuracy. The naming convention of below test cases follow
`benchmark_(number of gpus)_gpu` format for GPUs and
`benchmark_(topology)_tpu` format for TPUs.
"""
def __init__(self, output_dir=None, tpu=None, **kwargs):
super(BertSquadAccuracy, self).__init__(output_dir=output_dir, tpu=tpu)
def _setup(self):
"""Sets up the benchmark and SQuAD flags."""
super(BertSquadAccuracy, self)._setup()
FLAGS.train_data_path = SQUAD_TRAIN_DATA_PATH
FLAGS.predict_file = SQUAD_PREDICT_FILE
FLAGS.vocab_file = SQUAD_VOCAB_FILE
FLAGS.input_meta_data_path = SQUAD_FULL_INPUT_META_DATA_PATH
FLAGS.bert_config_file = MODEL_CONFIG_FILE_PATH
FLAGS.init_checkpoint = PRETRAINED_CHECKPOINT_PATH
FLAGS.num_train_epochs = 2
FLAGS.steps_per_loop = 100
@benchmark_wrappers.enable_runtime_flags
def _run_and_report_benchmark(self,
run_eagerly=False,
ds_type='mirrored'):
"""Runs the benchmark and reports various metrics."""
start_time_sec = time.time()
self._train_squad(run_eagerly=run_eagerly, ds_type=ds_type)
self._evaluate_squad(ds_type=ds_type)
wall_time_sec = time.time() - start_time_sec
summary = self._read_training_summary_from_file()
summary['eval_metrics'] = self.eval_metrics
summary['start_time_sec'] = start_time_sec
super(BertSquadAccuracy, self)._report_benchmark(
stats=summary,
wall_time_sec=wall_time_sec,
min_accuracy=0.900,
max_accuracy=0.920)
def benchmark_1_gpu_eager(self):
"""Tests BERT SQuAD model accuracy with 1 GPU with eager execution."""
self._setup()
self.num_gpus = 1
FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_squad_eager')
FLAGS.train_batch_size = 4
self._run_and_report_benchmark(ds_type='off', run_eagerly=True)
@owner_utils.Owner('tf-model-garden')
def benchmark_8_gpu(self):
"""Tests BERT SQuAD model accuracy with 8 GPUs."""
self._setup()
self.num_gpus = 8
FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_squad')
FLAGS.train_batch_size = 24
FLAGS.tf_gpu_thread_mode = 'gpu_private'
self._run_and_report_benchmark()
def benchmark_8_gpu_fp16(self):
"""Tests BERT SQuAD model accuracy with 8 GPUs and FP16."""
self._setup()
self.num_gpus = 8
FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_squad_fp16')
FLAGS.train_batch_size = 32
FLAGS.dtype = 'fp16'
FLAGS.loss_scale = 'dynamic'
FLAGS.tf_gpu_thread_mode = 'gpu_private'
self._run_and_report_benchmark()
def benchmark_8_gpu_xla(self):
"""Tests BERT SQuAD model accuracy with 8 GPUs."""
self._setup()
self.num_gpus = 8
FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_squad_xla')
FLAGS.train_batch_size = 32
FLAGS.enable_xla = True
FLAGS.tf_gpu_thread_mode = 'gpu_private'
self._run_and_report_benchmark()
@owner_utils.Owner('tf-model-garden')
def benchmark_2x2_tpu(self):
"""Tests BERT SQuAD model accuracy with 2x2 TPU."""
self._setup()
FLAGS.model_dir = self._get_model_dir('benchmark_2x2_tpu')
FLAGS.train_batch_size = 48
self._run_and_report_benchmark()
class BertSquadMultiWorkerAccuracy(BertSquadBenchmarkBase):
"""BERT SQuAD distributed accuracy tests with multiple workers."""
def __init__(self, output_dir=None, tpu=None, **kwargs):
super(BertSquadMultiWorkerAccuracy, self).__init__(
output_dir=output_dir, tpu=tpu)
def _setup(self):
"""Sets up the benchmark and SQuAD flags."""
super(BertSquadMultiWorkerAccuracy, self)._setup()
FLAGS.train_data_path = SQUAD_TRAIN_DATA_PATH
FLAGS.predict_file = SQUAD_PREDICT_FILE
FLAGS.vocab_file = SQUAD_VOCAB_FILE
FLAGS.input_meta_data_path = SQUAD_FULL_INPUT_META_DATA_PATH
FLAGS.bert_config_file = MODEL_CONFIG_FILE_PATH
FLAGS.init_checkpoint = PRETRAINED_CHECKPOINT_PATH
FLAGS.num_train_epochs = 2
FLAGS.steps_per_loop = 100
@benchmark_wrappers.enable_runtime_flags
def _run_and_report_benchmark(self,
use_ds=True,
run_eagerly=False):
"""Runs the benchmark and reports various metrics."""
start_time_sec = time.time()
self._train_squad(run_eagerly=run_eagerly,
ds_type='multi_worker_mirrored')
self._evaluate_squad(ds_type='multi_worker_mirrored')
wall_time_sec = time.time() - start_time_sec
summary = self._read_training_summary_from_file()
summary['eval_metrics'] = self.eval_metrics
super(BertSquadMultiWorkerAccuracy, self)._report_benchmark(
stats=summary,
wall_time_sec=wall_time_sec,
min_accuracy=0.900,
max_accuracy=0.920)
def _benchmark_common(self, num_workers, all_reduce_alg):
"""Common to all benchmarks in this class."""
self._setup()
num_gpus = 8
FLAGS.num_gpus = num_gpus
FLAGS.dtype = 'fp16'
FLAGS.enable_xla = False
FLAGS.distribution_strategy = 'multi_worker_mirrored'
FLAGS.tf_gpu_thread_mode = 'gpu_private'
FLAGS.datasets_num_private_threads = 32
FLAGS.model_dir = self._get_model_dir(
'benchmark_8_gpu_{}_worker_fp16_{}_tweaked'.format(
num_workers, all_reduce_alg))
FLAGS.train_batch_size = 4 * num_gpus * num_workers
FLAGS.all_reduce_alg = all_reduce_alg
self._run_and_report_benchmark()
def benchmark_eager_8_gpu_2_workers_fp16_ring_tweaked(self):
"""8 GPUs per worker, 2 workers, fp16, ring all-reduce."""
self._benchmark_common(num_workers=2, all_reduce_alg='ring')
def benchmark_eager_8_gpu_2_workers_fp16_nccl_tweaked(self):
"""8 GPUs per worker, 2 workers, fp16, nccl all-reduce."""
self._benchmark_common(num_workers=2, all_reduce_alg='nccl')
def benchmark_8_gpu_8_workers_fp16_ring_tweaked(self):
"""8 GPUs per worker, 8 workers, fp16, ring all-reduce."""
self._benchmark_common(num_workers=8, all_reduce_alg='ring')
def benchmark_8_gpu_8_workers_fp16_nccl_tweaked(self):
"""8 GPUs per worker, 8 workers, fp16, nccl all-reduce."""
self._benchmark_common(num_workers=8, all_reduce_alg='nccl')
class BertSquadMultiWorkerBenchmark(BertSquadBenchmarkBase):
"""BERT SQuAD distributed benchmark tests with multiple workers."""
def __init__(self, output_dir=TMP_DIR, tpu=None, **kwargs):
super(BertSquadMultiWorkerBenchmark, self).__init__(
output_dir=output_dir, tpu=tpu)
def _setup(self):
"""Sets up the benchmark and SQuAD flags."""
super(BertSquadMultiWorkerBenchmark, self)._setup()
FLAGS.train_data_path = SQUAD_TRAIN_DATA_PATH
FLAGS.predict_file = SQUAD_PREDICT_FILE
FLAGS.vocab_file = SQUAD_VOCAB_FILE
FLAGS.input_meta_data_path = SQUAD_FULL_INPUT_META_DATA_PATH
FLAGS.bert_config_file = MODEL_CONFIG_FILE_PATH
FLAGS.num_train_epochs = 1
FLAGS.steps_per_loop = 100
@benchmark_wrappers.enable_runtime_flags
def _run_and_report_benchmark(self,
use_ds=True,
run_eagerly=False):
"""Runs the benchmark and reports various metrics."""
if FLAGS.train_batch_size <= 4 * 8:
FLAGS.input_meta_data_path = SQUAD_LONG_INPUT_META_DATA_PATH
else:
FLAGS.input_meta_data_path = SQUAD_FULL_INPUT_META_DATA_PATH
start_time_sec = time.time()
self._train_squad(run_eagerly=run_eagerly,
ds_type='multi_worker_mirrored')
wall_time_sec = time.time() - start_time_sec
summary = self._read_training_summary_from_file()
summary['start_time_sec'] = start_time_sec
super(BertSquadMultiWorkerBenchmark, self)._report_benchmark(
stats=summary,
wall_time_sec=wall_time_sec,
min_accuracy=0,
max_accuracy=1)
def _benchmark_common(self, num_workers, all_reduce_alg):
"""Common to all benchmarks in this class."""
self._setup()
num_gpus = 8
FLAGS.num_gpus = num_gpus
FLAGS.dtype = 'fp16'
FLAGS.enable_xla = False
FLAGS.distribution_strategy = 'multi_worker_mirrored'
FLAGS.tf_gpu_thread_mode = 'gpu_private'
FLAGS.datasets_num_private_threads = 32
FLAGS.model_dir = self._get_model_dir(
'benchmark_8_gpu_{}_worker_fp16_{}_tweaked'.format(
num_workers, all_reduce_alg))
FLAGS.train_batch_size = 4 * num_gpus * num_workers
FLAGS.all_reduce_alg = all_reduce_alg
self._run_and_report_benchmark()
def benchmark_8_gpu_1_worker_fp16_ring_tweaked(self):
"""8 GPUs per worker, 1 worker, fp16, ring all-reduce."""
self._benchmark_common(num_workers=1, all_reduce_alg='ring')
def benchmark_8_gpu_1_worker_fp16_nccl_tweaked(self):
"""8 GPUs per worker, 1 worker, fp16, nccl all-reduce."""
self._benchmark_common(num_workers=1, all_reduce_alg='nccl')
def benchmark_8_gpu_2_workers_fp16_ring_tweaked(self):
"""8 GPUs per worker, 2 workers, fp16, ring all-reduce."""
self._benchmark_common(num_workers=2, all_reduce_alg='ring')
def benchmark_8_gpu_2_workers_fp16_nccl_tweaked(self):
"""8 GPUs per worker, 2 workers, fp16, nccl all-reduce."""
self._benchmark_common(num_workers=2, all_reduce_alg='nccl')
def benchmark_8_gpu_8_workers_fp16_ring_tweaked(self):
"""8 GPUs per worker, 8 workers, fp16, ring all-reduce."""
self._benchmark_common(num_workers=8, all_reduce_alg='ring')
def benchmark_8_gpu_8_workers_fp16_nccl_tweaked(self):
"""8 GPUs per worker, 8 workers, fp16, nccl all-reduce."""
self._benchmark_common(num_workers=8, all_reduce_alg='nccl')
if __name__ == '__main__':
tf.test.main()
|