Spaces:
Running
Running
File size: 9,373 Bytes
0b8359d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Main function to train various object detection models."""
from __future__ import absolute_import
from __future__ import division
# from __future__ import google_type_annotations
from __future__ import print_function
import functools
import pprint
# pylint: disable=g-bad-import-order
import tensorflow as tf
from absl import app
from absl import flags
from absl import logging
# pylint: enable=g-bad-import-order
from official.modeling.hyperparams import params_dict
from official.modeling.training import distributed_executor as executor
from official.utils import hyperparams_flags
from official.utils.flags import core as flags_core
from official.utils.misc import distribution_utils
from official.utils.misc import keras_utils
from official.vision.detection.configs import factory as config_factory
from official.vision.detection.dataloader import input_reader
from official.vision.detection.dataloader import mode_keys as ModeKeys
from official.vision.detection.executor.detection_executor import DetectionDistributedExecutor
from official.vision.detection.modeling import factory as model_factory
hyperparams_flags.initialize_common_flags()
flags_core.define_log_steps()
flags.DEFINE_bool('enable_xla', default=False, help='Enable XLA for GPU')
flags.DEFINE_string(
'mode', default='train', help='Mode to run: `train` or `eval`.')
flags.DEFINE_string(
'model', default='retinanet',
help='Model to run: `retinanet`, `mask_rcnn` or `shapemask`.')
flags.DEFINE_string('training_file_pattern', None,
'Location of the train data.')
flags.DEFINE_string('eval_file_pattern', None, 'Location of ther eval data')
flags.DEFINE_string(
'checkpoint_path', None,
'The checkpoint path to eval. Only used in eval_once mode.')
FLAGS = flags.FLAGS
def run_executor(params,
mode,
checkpoint_path=None,
train_input_fn=None,
eval_input_fn=None,
callbacks=None,
prebuilt_strategy=None):
"""Runs the object detection model on distribution strategy defined by the user."""
if params.architecture.use_bfloat16:
policy = tf.compat.v2.keras.mixed_precision.experimental.Policy(
'mixed_bfloat16')
tf.compat.v2.keras.mixed_precision.experimental.set_policy(policy)
model_builder = model_factory.model_generator(params)
if prebuilt_strategy is not None:
strategy = prebuilt_strategy
else:
strategy_config = params.strategy_config
distribution_utils.configure_cluster(strategy_config.worker_hosts,
strategy_config.task_index)
strategy = distribution_utils.get_distribution_strategy(
distribution_strategy=params.strategy_type,
num_gpus=strategy_config.num_gpus,
all_reduce_alg=strategy_config.all_reduce_alg,
num_packs=strategy_config.num_packs,
tpu_address=strategy_config.tpu)
num_workers = int(strategy.num_replicas_in_sync + 7) // 8
is_multi_host = (int(num_workers) >= 2)
if mode == 'train':
def _model_fn(params):
return model_builder.build_model(params, mode=ModeKeys.TRAIN)
logging.info(
'Train num_replicas_in_sync %d num_workers %d is_multi_host %s',
strategy.num_replicas_in_sync, num_workers, is_multi_host)
dist_executor = DetectionDistributedExecutor(
strategy=strategy,
params=params,
model_fn=_model_fn,
loss_fn=model_builder.build_loss_fn,
is_multi_host=is_multi_host,
predict_post_process_fn=model_builder.post_processing,
trainable_variables_filter=model_builder
.make_filter_trainable_variables_fn())
if is_multi_host:
train_input_fn = functools.partial(
train_input_fn,
batch_size=params.train.batch_size // strategy.num_replicas_in_sync)
return dist_executor.train(
train_input_fn=train_input_fn,
model_dir=params.model_dir,
iterations_per_loop=params.train.iterations_per_loop,
total_steps=params.train.total_steps,
init_checkpoint=model_builder.make_restore_checkpoint_fn(),
custom_callbacks=callbacks,
save_config=True)
elif mode == 'eval' or mode == 'eval_once':
def _model_fn(params):
return model_builder.build_model(params, mode=ModeKeys.PREDICT_WITH_GT)
logging.info('Eval num_replicas_in_sync %d num_workers %d is_multi_host %s',
strategy.num_replicas_in_sync, num_workers, is_multi_host)
if is_multi_host:
eval_input_fn = functools.partial(
eval_input_fn,
batch_size=params.eval.batch_size // strategy.num_replicas_in_sync)
dist_executor = DetectionDistributedExecutor(
strategy=strategy,
params=params,
model_fn=_model_fn,
loss_fn=model_builder.build_loss_fn,
is_multi_host=is_multi_host,
predict_post_process_fn=model_builder.post_processing,
trainable_variables_filter=model_builder
.make_filter_trainable_variables_fn())
if mode == 'eval':
results = dist_executor.evaluate_from_model_dir(
model_dir=params.model_dir,
eval_input_fn=eval_input_fn,
eval_metric_fn=model_builder.eval_metrics,
eval_timeout=params.eval.eval_timeout,
min_eval_interval=params.eval.min_eval_interval,
total_steps=params.train.total_steps)
else:
# Run evaluation once for a single checkpoint.
if not checkpoint_path:
raise ValueError('checkpoint_path cannot be empty.')
if tf.io.gfile.isdir(checkpoint_path):
checkpoint_path = tf.train.latest_checkpoint(checkpoint_path)
summary_writer = executor.SummaryWriter(params.model_dir, 'eval')
results, _ = dist_executor.evaluate_checkpoint(
checkpoint_path=checkpoint_path,
eval_input_fn=eval_input_fn,
eval_metric_fn=model_builder.eval_metrics,
summary_writer=summary_writer)
for k, v in results.items():
logging.info('Final eval metric %s: %f', k, v)
return results
else:
raise ValueError('Mode not found: %s.' % mode)
def run(callbacks=None):
keras_utils.set_session_config(enable_xla=FLAGS.enable_xla)
params = config_factory.config_generator(FLAGS.model)
params = params_dict.override_params_dict(
params, FLAGS.config_file, is_strict=True)
params = params_dict.override_params_dict(
params, FLAGS.params_override, is_strict=True)
params.override(
{
'strategy_type': FLAGS.strategy_type,
'model_dir': FLAGS.model_dir,
'strategy_config': executor.strategy_flags_dict(),
},
is_strict=False)
# Make sure use_tpu and strategy_type are in sync.
params.use_tpu = (params.strategy_type == 'tpu')
if not params.use_tpu:
params.override({
'architecture': {
'use_bfloat16': False,
},
'norm_activation': {
'use_sync_bn': False,
},
}, is_strict=True)
params.validate()
params.lock()
pp = pprint.PrettyPrinter()
params_str = pp.pformat(params.as_dict())
logging.info('Model Parameters: %s', params_str)
train_input_fn = None
eval_input_fn = None
training_file_pattern = FLAGS.training_file_pattern or params.train.train_file_pattern
eval_file_pattern = FLAGS.eval_file_pattern or params.eval.eval_file_pattern
if not training_file_pattern and not eval_file_pattern:
raise ValueError('Must provide at least one of training_file_pattern and '
'eval_file_pattern.')
if training_file_pattern:
# Use global batch size for single host.
train_input_fn = input_reader.InputFn(
file_pattern=training_file_pattern,
params=params,
mode=input_reader.ModeKeys.TRAIN,
batch_size=params.train.batch_size)
if eval_file_pattern:
eval_input_fn = input_reader.InputFn(
file_pattern=eval_file_pattern,
params=params,
mode=input_reader.ModeKeys.PREDICT_WITH_GT,
batch_size=params.eval.batch_size,
num_examples=params.eval.eval_samples)
if callbacks is None:
callbacks = []
if FLAGS.log_steps:
callbacks.append(
keras_utils.TimeHistory(
batch_size=params.train.batch_size,
log_steps=FLAGS.log_steps,
))
return run_executor(
params,
FLAGS.mode,
checkpoint_path=FLAGS.checkpoint_path,
train_input_fn=train_input_fn,
eval_input_fn=eval_input_fn,
callbacks=callbacks)
def main(argv):
del argv # Unused.
run()
if __name__ == '__main__':
tf.config.set_soft_device_placement(True)
app.run(main)
|