Spaces:
Running
Running
File size: 8,322 Bytes
0b8359d 10dea44 0b8359d e8087b3 0b8359d 10dea44 0b8359d 10dea44 0b8359d 10dea44 0b8359d c1c847c d73664b 0b8359d d73664b e8087b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
import pandas as pd
import numpy as np
import tensorflow as tf
import tensorflow_hub as hub
import sys
import random
sys.path.append('models')
from official.nlp.data import classifier_data_lib
from official.nlp.bert import tokenization
from official.nlp import optimization
tf.get_logger().setLevel('ERROR')
import math
from datetime import datetime
import gradio as gr
config = tf.compat.v1.ConfigProto(
device_count = {'cpu': 0}
)
sess = tf.compat.v1.Session(config=config)
num_warmup_steps=1
num_train_steps=1
init_lr = 3e-5
optimizer = optimization.create_optimizer(init_lr=init_lr,
num_train_steps=num_train_steps,
num_warmup_steps=num_warmup_steps,
optimizer_type='adamw')
### Load Model
checkpoint_filepath=r'./Checkpoint'
model = tf.keras.models.load_model(checkpoint_filepath, custom_objects={'KerasLayer':hub.KerasLayer , 'AdamWeightDecay': optimizer})
df_report = pd.read_csv('./CTH_Description.csv')
df_report['CTH Code'] = df_report['CTH Code'].astype(str).str.zfill(8)
df_report_DUTY = pd.read_csv('./CTH_WISE_DUTY_RATE.csv')
df_report_DUTY['CTH'] = df_report_DUTY['CTH'].astype(str).str.zfill(8)
df = pd.read_csv("./CTH_CODE_MAP.csv")
df['CTH'] = df['CTH'].astype(str).str.zfill(8)
df = df[['CTH', 'code']]
class_names=df[['CTH','code']].drop_duplicates(subset='CTH').sort_values(by='code',ignore_index=True)['CTH'].values.tolist()
label_list=list(range(0,len(class_names)))
max_seq_length = 200 # maximum length of (token) input sequences . it can be any number
train_batch_size = 32 # batch size ( 16 choosen to avoid Out-Of-Memory errors)
# Get BERT layer and tokenizer:
# More details here: https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/4
bert_layer = hub.KerasLayer("https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/4" , trainable = True)
vocab_file = bert_layer.resolved_object.vocab_file.asset_path.numpy()
do_lower_case = bert_layer.resolved_object.do_lower_case.numpy()
tokenizer = tokenization.FullTokenizer(vocab_file , do_lower_case)
# This provides a function to convert each row to input features and label ( as required by BERT)
max_seq_length = 200 # maximum length of (token) input sequences . it can be any number
def to_feature(text, label, label_list=label_list, max_seq_length=max_seq_length, tokenizer=tokenizer):
example = classifier_data_lib.InputExample(guid = None,
text_a = text.numpy(),
text_b = None,
label = label.numpy())
feature = classifier_data_lib.convert_single_example(0 , example , label_list , max_seq_length , tokenizer)
return (feature.input_ids , feature.input_mask , feature.segment_ids , feature.label_id)
def to_feature_map(text, label):
input_ids , input_mask , segment_ids , label_id = tf.py_function(to_feature , inp = [text , label],
Tout = [tf.int32 , tf.int32 , tf.int32 , tf.int32])
input_ids.set_shape([max_seq_length])
input_mask.set_shape([max_seq_length])
segment_ids.set_shape([max_seq_length])
label_id.set_shape([])
x = {
"input_word_ids": input_ids,
"input_mask": input_mask,
"input_type_ids": segment_ids
}
return(x,label_id)
def print3largest(arr, arr_size):
third = first = second = -sys.maxsize
for i in range(0, arr_size):
if (arr[i] > first):
third = second
second = first
first = arr[i]
elif (arr[i] > second):
third = second
second = arr[i]
elif (arr[i] > third):
third = arr[i]
pred_value_max_three=[first, second, third]
return pred_value_max_three
def count_special_character(string):
special_char= 0
for i in range(len(string)):
ch = string[i]
if (string[i].isalpha()):
continue
else:
special_char += 1
if len(string)==special_char:
return False
else:
return True
def predict_CTH(txt):
print('Desc: ',txt)
if (txt!='') and len(txt)>=3 and (count_special_character(txt)):
valid_data = tf.data.Dataset.from_tensor_slices(([txt] , [1])) # 1 refers to 'entertainment' and 2 refers to 'sport'
valid_data = (valid_data.map(to_feature_map).batch(1))
preds = model.predict(valid_data)
predicted_values = tf.nn.softmax(preds)
arr = predicted_values.numpy().tolist()[0]
n = len(arr)
pred_value_max_three=print3largest(arr, n)
now = datetime.now()
print("Time =", now)
sum_all = pred_value_max_three[0] + pred_value_max_three[1] + pred_value_max_three[2]
val_1 = pred_value_max_three[0]/sum_all
val_2 = pred_value_max_three[1]/sum_all
val_3 = pred_value_max_three[2]/sum_all
if pred_value_max_three[0]<=0.000131:
Var_CTH=[]
Var_desc=[]
Var_duty=[]
pred_duty=''
pred_desc=''
pred_CTH=''
return{'Not a adequate description':float(1.0)}
else:
Var_CTH=[]
Var_desc=[]
Var_duty=[]
pred_duty=''
pred_desc=''
pred_CTH=''
for i in pred_value_max_three:
#i=pred_value_max_three[0]
predicted_code=np.where(predicted_values.numpy()==i)[1][0]
pred_CTH=df[df['code'] == predicted_code]['CTH'].iloc[0]
try:
pred_duty=df_report_DUTY[df_report_DUTY['CTH']==str(pred_CTH)]['DUTY_RATE'].iloc[0]
except:
pred_duty=''
pass
try:
pred_desc=df_report[df_report['CTH Code']==str(pred_CTH)]['Concat Description'].iloc[0]
except:
pred_desc=''
pass
Var_CTH.append(pred_CTH)
Var_desc.append(pred_desc)
Var_duty.append(pred_duty)
P1 ='CTH: '+str(Var_CTH[0])+' Duty Rate(%): '+ str(Var_duty[0])
P2 ='CTH: '+str(Var_CTH[1])+' Duty Rate(%): '+ str(Var_duty[1])
P3 ='CTH: '+str(Var_CTH[2])+' Duty Rate(%): '+ str(Var_duty[2])
Q1='Desc: '+str(Var_desc[0])
Q2='Desc: '+str(Var_desc[1])
Q3='Desc: '+str(Var_desc[2])
return {str(P1):float(val_1),str(Q1):float(val_1),
str(P2):float(val_2),str(Q2):float(val_2),
str(P3):float(val_3),str(Q3):float(val_3),}
else:
return{'Enter Correct Description':float(1.0)}
input_txt=gr.Textbox(
label='Enter Your Product Descrption',
lines=3,
)
description="<p style='color:blue;text-align:justify;font-size:1vw;'>AdvaitBERT is modified version of BERT (Bidirectional Encoder Representation for Transformers), \
finetuned on the Text corpus of Indian Customs Declarations. It is trained for performing \
downstream tasks like automating the tariff classification and validation process of Customs \
declarations in realtime. This model may help Customs administration to efficiently use AI assisted \
NLP in realtime Customs process like Assessment, Post Clearance Audit, thereby highlighting classification \
inconsistencies and help in revenue augmentation.</a></p>"
title="<h1 style='color:green;text-align:center;font-size:2vw;'>AdvaitBERT </a></h1>"
article="<p style='color:black;text-align:right;font-size:1vw;'>Powered by NCTC </a></p>"
#css=".gradio-container {background-color: papayawhip}",
blocked_files=[' /home/user/app/Checkpoint',' /home/user/app/fun_advaitbert.py',]
gr.Interface(
predict_CTH,
inputs=input_txt,
outputs="label",
interpretation="default",
description=description,
#live=True,
examples = ['200 SI/SI/SI LPO ALUMINIUM LIDS (QTY: 8820000 PCS/PRICE: 21.'],
title=title,
article=article,
blocked_paths=blocked_files,
).launch(auth=("NCTC", "NCTC"),blocked_paths=blocked_files,) |