File size: 8,322 Bytes
0b8359d
 
 
 
 
 
 
 
 
 
 
 
10dea44
0b8359d
 
e8087b3
0b8359d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10dea44
 
0b8359d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10dea44
 
 
 
 
0b8359d
 
10dea44
0b8359d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1c847c
d73664b
0b8359d
 
 
 
 
 
 
 
 
 
d73664b
e8087b3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import pandas as pd
import numpy as np
import tensorflow as tf
import tensorflow_hub as hub
import sys
import random
sys.path.append('models')
from official.nlp.data import classifier_data_lib
from official.nlp.bert import tokenization
from official.nlp import optimization
tf.get_logger().setLevel('ERROR')
import math
from datetime import datetime
import gradio as gr


config = tf.compat.v1.ConfigProto(
        device_count = {'cpu': 0}
    )
sess = tf.compat.v1.Session(config=config)
num_warmup_steps=1
num_train_steps=1
init_lr = 3e-5
optimizer = optimization.create_optimizer(init_lr=init_lr,
                                          num_train_steps=num_train_steps,
                                          num_warmup_steps=num_warmup_steps,
                                          optimizer_type='adamw')

###    Load Model
checkpoint_filepath=r'./Checkpoint'
model = tf.keras.models.load_model(checkpoint_filepath, custom_objects={'KerasLayer':hub.KerasLayer , 'AdamWeightDecay': optimizer})

df_report = pd.read_csv('./CTH_Description.csv')
df_report['CTH Code'] = df_report['CTH Code'].astype(str).str.zfill(8)

df_report_DUTY = pd.read_csv('./CTH_WISE_DUTY_RATE.csv')
df_report_DUTY['CTH'] = df_report_DUTY['CTH'].astype(str).str.zfill(8)

df = pd.read_csv("./CTH_CODE_MAP.csv")
df['CTH'] = df['CTH'].astype(str).str.zfill(8)
df = df[['CTH', 'code']]

class_names=df[['CTH','code']].drop_duplicates(subset='CTH').sort_values(by='code',ignore_index=True)['CTH'].values.tolist()
label_list=list(range(0,len(class_names)))
max_seq_length = 200 # maximum length of (token) input sequences . it can be any number
train_batch_size = 32 # batch size ( 16 choosen to avoid Out-Of-Memory errors)

# Get BERT layer and tokenizer:
# More details here: https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/4
bert_layer = hub.KerasLayer("https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/4" , trainable = True)
vocab_file = bert_layer.resolved_object.vocab_file.asset_path.numpy()
do_lower_case = bert_layer.resolved_object.do_lower_case.numpy()
tokenizer = tokenization.FullTokenizer(vocab_file , do_lower_case)

# This provides a function to convert each row to input features and label ( as required by BERT)

max_seq_length = 200 # maximum length of (token) input sequences . it can be any number
def to_feature(text, label, label_list=label_list, max_seq_length=max_seq_length, tokenizer=tokenizer):
  example = classifier_data_lib.InputExample(guid = None,
                                             text_a = text.numpy(),
                                             text_b = None,
                                             label = label.numpy())
  feature = classifier_data_lib.convert_single_example(0 , example , label_list , max_seq_length , tokenizer)
  
  return (feature.input_ids , feature.input_mask , feature.segment_ids , feature.label_id)


def to_feature_map(text, label):
  input_ids , input_mask , segment_ids , label_id = tf.py_function(to_feature , inp = [text , label],
                                                                   Tout = [tf.int32 , tf.int32 , tf.int32 , tf.int32])
  
  input_ids.set_shape([max_seq_length])
  input_mask.set_shape([max_seq_length])
  segment_ids.set_shape([max_seq_length])
  label_id.set_shape([])

  x = {
      "input_word_ids": input_ids,
       "input_mask": input_mask,
       "input_type_ids": segment_ids
  }

  return(x,label_id)



def print3largest(arr, arr_size): 
    third = first = second = -sys.maxsize 
    for i in range(0, arr_size):
     
        if (arr[i] > first):        
            third = second
            second = first
            first = arr[i]        
        elif (arr[i] > second):       
            third = second
            second = arr[i]         
        elif (arr[i] > third):
            third = arr[i]
    pred_value_max_three=[first, second, third]  
    return pred_value_max_three

def count_special_character(string): 
    special_char= 0   
    for i in range(len(string)):  
        ch = string[i]
        if (string[i].isalpha()):  
            continue
        else: 
            special_char += 1

    if len(string)==special_char:
        return False
    else:
        return True

def predict_CTH(txt):
    print('Desc: ',txt)
    if (txt!='') and len(txt)>=3 and (count_special_character(txt)):
        valid_data = tf.data.Dataset.from_tensor_slices(([txt] , [1])) # 1 refers to 'entertainment' and 2 refers to 'sport'
        valid_data = (valid_data.map(to_feature_map).batch(1))
        preds = model.predict(valid_data)
        predicted_values = tf.nn.softmax(preds)
        arr = predicted_values.numpy().tolist()[0]
        n = len(arr)
        pred_value_max_three=print3largest(arr, n)

        now = datetime.now()
        print("Time =", now)
        sum_all = pred_value_max_three[0] + pred_value_max_three[1] + pred_value_max_three[2]

        val_1 = pred_value_max_three[0]/sum_all
        val_2 = pred_value_max_three[1]/sum_all
        val_3 = pred_value_max_three[2]/sum_all

        if pred_value_max_three[0]<=0.000131:
            Var_CTH=[]
            Var_desc=[]
            Var_duty=[]
            pred_duty=''
            pred_desc=''
            pred_CTH=''

            return{'Not a adequate description':float(1.0)}
        else:
            Var_CTH=[]
            Var_desc=[]
            Var_duty=[]
            pred_duty=''
            pred_desc=''
            pred_CTH=''


            for i in pred_value_max_three:
                #i=pred_value_max_three[0]
                predicted_code=np.where(predicted_values.numpy()==i)[1][0]
                pred_CTH=df[df['code'] == predicted_code]['CTH'].iloc[0]    

                try:
                    pred_duty=df_report_DUTY[df_report_DUTY['CTH']==str(pred_CTH)]['DUTY_RATE'].iloc[0]
                except:
                    pred_duty=''
                    pass

                try:
                    pred_desc=df_report[df_report['CTH Code']==str(pred_CTH)]['Concat Description'].iloc[0]
                except:
                    pred_desc=''
                    pass

                Var_CTH.append(pred_CTH)
                Var_desc.append(pred_desc)
                Var_duty.append(pred_duty)

            P1 ='CTH: '+str(Var_CTH[0])+'   Duty Rate(%): '+ str(Var_duty[0]) 
            P2 ='CTH: '+str(Var_CTH[1])+'   Duty Rate(%): '+ str(Var_duty[1])
            P3 ='CTH: '+str(Var_CTH[2])+'   Duty Rate(%): '+ str(Var_duty[2]) 


            Q1='Desc: '+str(Var_desc[0])
            Q2='Desc: '+str(Var_desc[1])
            Q3='Desc: '+str(Var_desc[2])

                
            return {str(P1):float(val_1),str(Q1):float(val_1),
                    str(P2):float(val_2),str(Q2):float(val_2),
                    str(P3):float(val_3),str(Q3):float(val_3),}
    else:
        return{'Enter Correct Description':float(1.0)}


input_txt=gr.Textbox(
            label='Enter Your Product Descrption',
            lines=3,
        )
description="<p style='color:blue;text-align:justify;font-size:1vw;'>AdvaitBERT is modified version of BERT (Bidirectional Encoder Representation for Transformers), \
finetuned on the Text corpus of Indian Customs Declarations. It is trained for performing  \
downstream tasks  like automating the tariff classification and validation process of Customs \
declarations in realtime. This model may help Customs administration to efficiently use AI assisted \
NLP in realtime Customs process like Assessment, Post Clearance Audit, thereby highlighting classification \
inconsistencies and help in revenue augmentation.</a></p>"

title="<h1 style='color:green;text-align:center;font-size:2vw;'>AdvaitBERT </a></h1>"
article="<p style='color:black;text-align:right;font-size:1vw;'>Powered by NCTC </a></p>"

#css=".gradio-container {background-color: papayawhip}",

blocked_files=[' /home/user/app/Checkpoint',' /home/user/app/fun_advaitbert.py',]

gr.Interface(
    predict_CTH,
    inputs=input_txt,                             
    outputs="label",
    interpretation="default",
    description=description,
    #live=True,
    examples = ['200 SI/SI/SI LPO ALUMINIUM LIDS (QTY: 8820000 PCS/PRICE: 21.'],
    title=title,
    article=article,
    blocked_paths=blocked_files,
).launch(auth=("NCTC", "NCTC"),blocked_paths=blocked_files,)