File size: 8,287 Bytes
0b8359d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Implementations for Im2Vox PTN (NIPS16) model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os

import numpy as np
from six.moves import xrange
import tensorflow as tf

import losses
import metrics
import model_voxel_generation
import utils
from nets import im2vox_factory

slim = tf.contrib.slim


class model_PTN(model_voxel_generation.Im2Vox):  # pylint:disable=invalid-name
  """Inherits the generic Im2Vox model class and implements the functions."""

  def __init__(self, params):
    super(model_PTN, self).__init__(params)

  # For testing, this selects all views in input
  def preprocess_with_all_views(self, raw_inputs):
    (quantity, num_views) = raw_inputs['images'].get_shape().as_list()[:2]

    inputs = dict()
    inputs['voxels'] = []
    inputs['images_1'] = []
    for k in xrange(num_views):
      inputs['matrix_%d' % (k + 1)] = []
    inputs['matrix_1'] = []
    for n in xrange(quantity):
      for k in xrange(num_views):
        inputs['images_1'].append(raw_inputs['images'][n, k, :, :, :])
        inputs['voxels'].append(raw_inputs['voxels'][n, :, :, :, :])
        tf_matrix = self.get_transform_matrix(k)
        inputs['matrix_%d' % (k + 1)].append(tf_matrix)

    inputs['images_1'] = tf.stack(inputs['images_1'])
    inputs['voxels'] = tf.stack(inputs['voxels'])
    for k in xrange(num_views):
      inputs['matrix_%d' % (k + 1)] = tf.stack(inputs['matrix_%d' % (k + 1)])

    return inputs

  def get_model_fn(self, is_training=True, reuse=False, run_projection=True):
    return im2vox_factory.get(self._params, is_training, reuse, run_projection)

  def get_regularization_loss(self, scopes):
    return losses.regularization_loss(scopes, self._params)

  def get_loss(self, inputs, outputs):
    """Computes the loss used for PTN paper (projection + volume loss)."""
    g_loss = tf.zeros(dtype=tf.float32, shape=[])

    if self._params.proj_weight:
      g_loss += losses.add_volume_proj_loss(
          inputs, outputs, self._params.step_size, self._params.proj_weight)

    if self._params.volume_weight:
      g_loss += losses.add_volume_loss(inputs, outputs, 1,
                                       self._params.volume_weight)

    slim.summaries.add_scalar_summary(g_loss, 'im2vox_loss', prefix='losses')

    return g_loss

  def get_metrics(self, inputs, outputs):
    """Aggregate the metrics for voxel generation model.

    Args:
      inputs: Input dictionary of the voxel generation model.
      outputs: Output dictionary returned by the voxel generation model.

    Returns:
      names_to_values: metrics->values (dict).
      names_to_updates: metrics->ops (dict).
    """
    names_to_values = dict()
    names_to_updates = dict()

    tmp_values, tmp_updates = metrics.add_volume_iou_metrics(inputs, outputs)

    names_to_values.update(tmp_values)
    names_to_updates.update(tmp_updates)

    for name, value in names_to_values.iteritems():
      slim.summaries.add_scalar_summary(
          value, name, prefix='eval', print_summary=True)

    return names_to_values, names_to_updates

  def write_disk_grid(self,
                      global_step,
                      log_dir,
                      input_images,
                      gt_projs,
                      pred_projs,
                      input_voxels=None,
                      output_voxels=None):
    """Function called by TF to save the prediction periodically."""
    summary_freq = self._params.save_every

    def write_grid(input_images, gt_projs, pred_projs, global_step,
                   input_voxels, output_voxels):
      """Native python function to call for writing images to files."""
      grid = _build_image_grid(
          input_images,
          gt_projs,
          pred_projs,
          input_voxels=input_voxels,
          output_voxels=output_voxels)

      if global_step % summary_freq == 0:
        img_path = os.path.join(log_dir, '%s.jpg' % str(global_step))
        utils.save_image(grid, img_path)
      return grid

    save_op = tf.py_func(write_grid, [
        input_images, gt_projs, pred_projs, global_step, input_voxels,
        output_voxels
    ], [tf.uint8], 'write_grid')[0]
    slim.summaries.add_image_summary(
        tf.expand_dims(save_op, axis=0), name='grid_vis')
    return save_op

  def get_transform_matrix(self, view_out):
    """Get the 4x4 Perspective Transfromation matrix used for PTN."""
    num_views = self._params.num_views
    focal_length = self._params.focal_length
    focal_range = self._params.focal_range
    phi = 30
    theta_interval = 360.0 / num_views
    theta = theta_interval * view_out

    #  pylint: disable=invalid-name
    camera_matrix = np.zeros((4, 4), dtype=np.float32)
    intrinsic_matrix = np.eye(4, dtype=np.float32)
    extrinsic_matrix = np.eye(4, dtype=np.float32)

    sin_phi = np.sin(float(phi) / 180.0 * np.pi)
    cos_phi = np.cos(float(phi) / 180.0 * np.pi)
    sin_theta = np.sin(float(-theta) / 180.0 * np.pi)
    cos_theta = np.cos(float(-theta) / 180.0 * np.pi)

    rotation_azimuth = np.zeros((3, 3), dtype=np.float32)
    rotation_azimuth[0, 0] = cos_theta
    rotation_azimuth[2, 2] = cos_theta
    rotation_azimuth[0, 2] = -sin_theta
    rotation_azimuth[2, 0] = sin_theta
    rotation_azimuth[1, 1] = 1.0

    ## rotation axis -- x
    rotation_elevation = np.zeros((3, 3), dtype=np.float32)
    rotation_elevation[0, 0] = cos_phi
    rotation_elevation[0, 1] = sin_phi
    rotation_elevation[1, 0] = -sin_phi
    rotation_elevation[1, 1] = cos_phi
    rotation_elevation[2, 2] = 1.0

    rotation_matrix = np.matmul(rotation_azimuth, rotation_elevation)
    displacement = np.zeros((3, 1), dtype=np.float32)
    displacement[0, 0] = float(focal_length) + float(focal_range) / 2.0
    displacement = np.matmul(rotation_matrix, displacement)

    extrinsic_matrix[0:3, 0:3] = rotation_matrix
    extrinsic_matrix[0:3, 3:4] = -displacement

    intrinsic_matrix[2, 2] = 1.0 / float(focal_length)
    intrinsic_matrix[1, 1] = 1.0 / float(focal_length)

    camera_matrix = np.matmul(extrinsic_matrix, intrinsic_matrix)
    return camera_matrix


def _build_image_grid(input_images,
                      gt_projs,
                      pred_projs,
                      input_voxels,
                      output_voxels,
                      vis_size=128):
  """Builds a grid image by concatenating the input images."""
  quantity = input_images.shape[0]

  for row in xrange(int(quantity / 3)):
    for col in xrange(3):
      index = row * 3 + col
      input_img_ = utils.resize_image(input_images[index, :, :, :], vis_size,
                                      vis_size)
      gt_proj_ = utils.resize_image(gt_projs[index, :, :, :], vis_size,
                                    vis_size)
      pred_proj_ = utils.resize_image(pred_projs[index, :, :, :], vis_size,
                                      vis_size)
      gt_voxel_vis = utils.resize_image(
          utils.display_voxel(input_voxels[index, :, :, :, 0]), vis_size,
          vis_size)
      pred_voxel_vis = utils.resize_image(
          utils.display_voxel(output_voxels[index, :, :, :, 0]), vis_size,
          vis_size)
      if col == 0:
        tmp_ = np.concatenate(
            [input_img_, gt_proj_, pred_proj_, gt_voxel_vis, pred_voxel_vis], 1)
      else:
        tmp_ = np.concatenate([
            tmp_, input_img_, gt_proj_, pred_proj_, gt_voxel_vis, pred_voxel_vis
        ], 1)
    if row == 0:
      out_grid = tmp_
    else:
      out_grid = np.concatenate([out_grid, tmp_], 0)

  return out_grid