Spaces:
Running
Running
File size: 22,171 Bytes
0b8359d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 |
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for object detection model library."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import functools
import os
import unittest
import numpy as np
import tensorflow.compat.v1 as tf
from object_detection import inputs
from object_detection import model_hparams
from object_detection import model_lib
from object_detection.builders import model_builder
from object_detection.core import standard_fields as fields
from object_detection.utils import config_util
from object_detection.utils import tf_version
# Model for test. Options are:
# 'ssd_inception_v2_pets', 'faster_rcnn_resnet50_pets'
MODEL_NAME_FOR_TEST = 'ssd_inception_v2_pets'
# Model for testing keypoints.
MODEL_NAME_FOR_KEYPOINTS_TEST = 'ssd_mobilenet_v1_fpp'
# Model for testing tfSequenceExample inputs.
MODEL_NAME_FOR_SEQUENCE_EXAMPLE_TEST = 'context_rcnn_camera_trap'
def _get_data_path(model_name):
"""Returns an absolute path to TFRecord file."""
if model_name == MODEL_NAME_FOR_SEQUENCE_EXAMPLE_TEST:
return os.path.join(tf.resource_loader.get_data_files_path(), 'test_data',
'snapshot_serengeti_sequence_examples.record')
else:
return os.path.join(tf.resource_loader.get_data_files_path(), 'test_data',
'pets_examples.record')
def get_pipeline_config_path(model_name):
"""Returns path to the local pipeline config file."""
if model_name == MODEL_NAME_FOR_KEYPOINTS_TEST:
return os.path.join(tf.resource_loader.get_data_files_path(), 'test_data',
model_name + '.config')
elif model_name == MODEL_NAME_FOR_SEQUENCE_EXAMPLE_TEST:
return os.path.join(tf.resource_loader.get_data_files_path(), 'test_data',
model_name + '.config')
else:
return os.path.join(tf.resource_loader.get_data_files_path(), 'samples',
'configs', model_name + '.config')
def _get_labelmap_path():
"""Returns an absolute path to label map file."""
return os.path.join(tf.resource_loader.get_data_files_path(), 'data',
'pet_label_map.pbtxt')
def _get_keypoints_labelmap_path():
"""Returns an absolute path to label map file."""
return os.path.join(tf.resource_loader.get_data_files_path(), 'data',
'face_person_with_keypoints_label_map.pbtxt')
def _get_sequence_example_labelmap_path():
"""Returns an absolute path to label map file."""
return os.path.join(tf.resource_loader.get_data_files_path(), 'data',
'snapshot_serengeti_label_map.pbtxt')
def _get_configs_for_model(model_name):
"""Returns configurations for model."""
filename = get_pipeline_config_path(model_name)
data_path = _get_data_path(model_name)
if model_name == MODEL_NAME_FOR_KEYPOINTS_TEST:
label_map_path = _get_keypoints_labelmap_path()
elif model_name == MODEL_NAME_FOR_SEQUENCE_EXAMPLE_TEST:
label_map_path = _get_sequence_example_labelmap_path()
else:
label_map_path = _get_labelmap_path()
configs = config_util.get_configs_from_pipeline_file(filename)
override_dict = {
'train_input_path': data_path,
'eval_input_path': data_path,
'label_map_path': label_map_path
}
configs = config_util.merge_external_params_with_configs(
configs, kwargs_dict=override_dict)
return configs
def _make_initializable_iterator(dataset):
"""Creates an iterator, and initializes tables.
Args:
dataset: A `tf.data.Dataset` object.
Returns:
A `tf.data.Iterator`.
"""
iterator = tf.data.make_initializable_iterator(dataset)
tf.add_to_collection(tf.GraphKeys.TABLE_INITIALIZERS, iterator.initializer)
return iterator
@unittest.skipIf(tf_version.is_tf2(), 'Skipping TF1.X only test.')
class ModelLibTest(tf.test.TestCase):
@classmethod
def setUpClass(cls):
tf.reset_default_graph()
def _assert_model_fn_for_train_eval(self, configs, mode,
class_agnostic=False):
model_config = configs['model']
train_config = configs['train_config']
with tf.Graph().as_default():
if mode == 'train':
features, labels = _make_initializable_iterator(
inputs.create_train_input_fn(configs['train_config'],
configs['train_input_config'],
configs['model'])()).get_next()
model_mode = tf.estimator.ModeKeys.TRAIN
batch_size = train_config.batch_size
elif mode == 'eval':
features, labels = _make_initializable_iterator(
inputs.create_eval_input_fn(configs['eval_config'],
configs['eval_input_config'],
configs['model'])()).get_next()
model_mode = tf.estimator.ModeKeys.EVAL
batch_size = 1
elif mode == 'eval_on_train':
features, labels = _make_initializable_iterator(
inputs.create_eval_input_fn(configs['eval_config'],
configs['train_input_config'],
configs['model'])()).get_next()
model_mode = tf.estimator.ModeKeys.EVAL
batch_size = 1
detection_model_fn = functools.partial(
model_builder.build, model_config=model_config, is_training=True)
hparams = model_hparams.create_hparams(
hparams_overrides='load_pretrained=false')
model_fn = model_lib.create_model_fn(detection_model_fn, configs, hparams)
estimator_spec = model_fn(features, labels, model_mode)
self.assertIsNotNone(estimator_spec.loss)
self.assertIsNotNone(estimator_spec.predictions)
if mode == 'eval' or mode == 'eval_on_train':
if class_agnostic:
self.assertNotIn('detection_classes', estimator_spec.predictions)
else:
detection_classes = estimator_spec.predictions['detection_classes']
self.assertEqual(batch_size, detection_classes.shape.as_list()[0])
self.assertEqual(tf.float32, detection_classes.dtype)
detection_boxes = estimator_spec.predictions['detection_boxes']
detection_scores = estimator_spec.predictions['detection_scores']
num_detections = estimator_spec.predictions['num_detections']
self.assertEqual(batch_size, detection_boxes.shape.as_list()[0])
self.assertEqual(tf.float32, detection_boxes.dtype)
self.assertEqual(batch_size, detection_scores.shape.as_list()[0])
self.assertEqual(tf.float32, detection_scores.dtype)
self.assertEqual(tf.float32, num_detections.dtype)
if mode == 'eval':
self.assertIn('Detections_Left_Groundtruth_Right/0',
estimator_spec.eval_metric_ops)
if model_mode == tf.estimator.ModeKeys.TRAIN:
self.assertIsNotNone(estimator_spec.train_op)
return estimator_spec
def _assert_model_fn_for_predict(self, configs):
model_config = configs['model']
with tf.Graph().as_default():
features, _ = _make_initializable_iterator(
inputs.create_eval_input_fn(configs['eval_config'],
configs['eval_input_config'],
configs['model'])()).get_next()
detection_model_fn = functools.partial(
model_builder.build, model_config=model_config, is_training=False)
hparams = model_hparams.create_hparams(
hparams_overrides='load_pretrained=false')
model_fn = model_lib.create_model_fn(detection_model_fn, configs, hparams)
estimator_spec = model_fn(features, None, tf.estimator.ModeKeys.PREDICT)
self.assertIsNone(estimator_spec.loss)
self.assertIsNone(estimator_spec.train_op)
self.assertIsNotNone(estimator_spec.predictions)
self.assertIsNotNone(estimator_spec.export_outputs)
self.assertIn(tf.saved_model.signature_constants.PREDICT_METHOD_NAME,
estimator_spec.export_outputs)
def test_model_fn_in_train_mode(self):
"""Tests the model function in TRAIN mode."""
configs = _get_configs_for_model(MODEL_NAME_FOR_TEST)
self._assert_model_fn_for_train_eval(configs, 'train')
def test_model_fn_in_train_mode_sequences(self):
"""Tests the model function in TRAIN mode."""
configs = _get_configs_for_model(MODEL_NAME_FOR_SEQUENCE_EXAMPLE_TEST)
self._assert_model_fn_for_train_eval(configs, 'train')
def test_model_fn_in_train_mode_freeze_all_variables(self):
"""Tests model_fn TRAIN mode with all variables frozen."""
configs = _get_configs_for_model(MODEL_NAME_FOR_TEST)
configs['train_config'].freeze_variables.append('.*')
with self.assertRaisesRegexp(ValueError, 'No variables to optimize'):
self._assert_model_fn_for_train_eval(configs, 'train')
def test_model_fn_in_train_mode_freeze_all_included_variables(self):
"""Tests model_fn TRAIN mode with all included variables frozen."""
configs = _get_configs_for_model(MODEL_NAME_FOR_TEST)
train_config = configs['train_config']
train_config.update_trainable_variables.append('FeatureExtractor')
train_config.freeze_variables.append('.*')
with self.assertRaisesRegexp(ValueError, 'No variables to optimize'):
self._assert_model_fn_for_train_eval(configs, 'train')
def test_model_fn_in_train_mode_freeze_box_predictor(self):
"""Tests model_fn TRAIN mode with FeatureExtractor variables frozen."""
configs = _get_configs_for_model(MODEL_NAME_FOR_TEST)
train_config = configs['train_config']
train_config.update_trainable_variables.append('FeatureExtractor')
train_config.update_trainable_variables.append('BoxPredictor')
train_config.freeze_variables.append('FeatureExtractor')
self._assert_model_fn_for_train_eval(configs, 'train')
def test_model_fn_in_eval_mode(self):
"""Tests the model function in EVAL mode."""
configs = _get_configs_for_model(MODEL_NAME_FOR_TEST)
self._assert_model_fn_for_train_eval(configs, 'eval')
def test_model_fn_in_eval_mode_sequences(self):
"""Tests the model function in EVAL mode."""
configs = _get_configs_for_model(MODEL_NAME_FOR_SEQUENCE_EXAMPLE_TEST)
self._assert_model_fn_for_train_eval(configs, 'eval')
def test_model_fn_in_keypoints_eval_mode(self):
"""Tests the model function in EVAL mode with keypoints config."""
configs = _get_configs_for_model(MODEL_NAME_FOR_KEYPOINTS_TEST)
estimator_spec = self._assert_model_fn_for_train_eval(configs, 'eval')
metric_ops = estimator_spec.eval_metric_ops
self.assertIn('Keypoints_Precision/mAP ByCategory/face', metric_ops)
self.assertIn('Keypoints_Precision/mAP ByCategory/PERSON', metric_ops)
detection_keypoints = estimator_spec.predictions['detection_keypoints']
self.assertEqual(1, detection_keypoints.shape.as_list()[0])
self.assertEqual(tf.float32, detection_keypoints.dtype)
def test_model_fn_in_eval_on_train_mode(self):
"""Tests the model function in EVAL mode with train data."""
configs = _get_configs_for_model(MODEL_NAME_FOR_TEST)
self._assert_model_fn_for_train_eval(configs, 'eval_on_train')
def test_model_fn_in_predict_mode(self):
"""Tests the model function in PREDICT mode."""
configs = _get_configs_for_model(MODEL_NAME_FOR_TEST)
self._assert_model_fn_for_predict(configs)
def test_create_estimator_and_inputs(self):
"""Tests that Estimator and input function are constructed correctly."""
run_config = tf.estimator.RunConfig()
hparams = model_hparams.create_hparams(
hparams_overrides='load_pretrained=false')
pipeline_config_path = get_pipeline_config_path(MODEL_NAME_FOR_TEST)
train_steps = 20
train_and_eval_dict = model_lib.create_estimator_and_inputs(
run_config,
hparams,
pipeline_config_path,
train_steps=train_steps)
estimator = train_and_eval_dict['estimator']
train_steps = train_and_eval_dict['train_steps']
self.assertIsInstance(estimator, tf.estimator.Estimator)
self.assertEqual(20, train_steps)
self.assertIn('train_input_fn', train_and_eval_dict)
self.assertIn('eval_input_fns', train_and_eval_dict)
self.assertIn('eval_on_train_input_fn', train_and_eval_dict)
def test_create_estimator_and_inputs_sequence_example(self):
"""Tests that Estimator and input function are constructed correctly."""
run_config = tf.estimator.RunConfig()
hparams = model_hparams.create_hparams(
hparams_overrides='load_pretrained=false')
pipeline_config_path = get_pipeline_config_path(
MODEL_NAME_FOR_SEQUENCE_EXAMPLE_TEST)
train_steps = 20
train_and_eval_dict = model_lib.create_estimator_and_inputs(
run_config,
hparams,
pipeline_config_path,
train_steps=train_steps)
estimator = train_and_eval_dict['estimator']
train_steps = train_and_eval_dict['train_steps']
self.assertIsInstance(estimator, tf.estimator.Estimator)
self.assertEqual(20, train_steps)
self.assertIn('train_input_fn', train_and_eval_dict)
self.assertIn('eval_input_fns', train_and_eval_dict)
self.assertIn('eval_on_train_input_fn', train_and_eval_dict)
def test_create_estimator_with_default_train_eval_steps(self):
"""Tests that number of train/eval defaults to config values."""
run_config = tf.estimator.RunConfig()
hparams = model_hparams.create_hparams(
hparams_overrides='load_pretrained=false')
pipeline_config_path = get_pipeline_config_path(MODEL_NAME_FOR_TEST)
configs = config_util.get_configs_from_pipeline_file(pipeline_config_path)
config_train_steps = configs['train_config'].num_steps
train_and_eval_dict = model_lib.create_estimator_and_inputs(
run_config, hparams, pipeline_config_path)
estimator = train_and_eval_dict['estimator']
train_steps = train_and_eval_dict['train_steps']
self.assertIsInstance(estimator, tf.estimator.Estimator)
self.assertEqual(config_train_steps, train_steps)
def test_create_tpu_estimator_and_inputs(self):
"""Tests that number of train/eval defaults to config values."""
run_config = tf.estimator.tpu.RunConfig()
hparams = model_hparams.create_hparams(
hparams_overrides='load_pretrained=false')
pipeline_config_path = get_pipeline_config_path(MODEL_NAME_FOR_TEST)
train_steps = 20
train_and_eval_dict = model_lib.create_estimator_and_inputs(
run_config,
hparams,
pipeline_config_path,
train_steps=train_steps,
use_tpu_estimator=True)
estimator = train_and_eval_dict['estimator']
train_steps = train_and_eval_dict['train_steps']
self.assertIsInstance(estimator, tf.estimator.tpu.TPUEstimator)
self.assertEqual(20, train_steps)
def test_create_train_and_eval_specs(self):
"""Tests that `TrainSpec` and `EvalSpec` is created correctly."""
run_config = tf.estimator.RunConfig()
hparams = model_hparams.create_hparams(
hparams_overrides='load_pretrained=false')
pipeline_config_path = get_pipeline_config_path(MODEL_NAME_FOR_TEST)
train_steps = 20
train_and_eval_dict = model_lib.create_estimator_and_inputs(
run_config,
hparams,
pipeline_config_path,
train_steps=train_steps)
train_input_fn = train_and_eval_dict['train_input_fn']
eval_input_fns = train_and_eval_dict['eval_input_fns']
eval_on_train_input_fn = train_and_eval_dict['eval_on_train_input_fn']
predict_input_fn = train_and_eval_dict['predict_input_fn']
train_steps = train_and_eval_dict['train_steps']
train_spec, eval_specs = model_lib.create_train_and_eval_specs(
train_input_fn,
eval_input_fns,
eval_on_train_input_fn,
predict_input_fn,
train_steps,
eval_on_train_data=True,
final_exporter_name='exporter',
eval_spec_names=['holdout'])
self.assertEqual(train_steps, train_spec.max_steps)
self.assertEqual(2, len(eval_specs))
self.assertEqual(None, eval_specs[0].steps)
self.assertEqual('holdout', eval_specs[0].name)
self.assertEqual('exporter', eval_specs[0].exporters[0].name)
self.assertEqual(None, eval_specs[1].steps)
self.assertEqual('eval_on_train', eval_specs[1].name)
def test_experiment(self):
"""Tests that the `Experiment` object is constructed correctly."""
run_config = tf.estimator.RunConfig()
hparams = model_hparams.create_hparams(
hparams_overrides='load_pretrained=false')
pipeline_config_path = get_pipeline_config_path(MODEL_NAME_FOR_TEST)
experiment = model_lib.populate_experiment(
run_config,
hparams,
pipeline_config_path,
train_steps=10,
eval_steps=20)
self.assertEqual(10, experiment.train_steps)
self.assertEqual(None, experiment.eval_steps)
@unittest.skipIf(tf_version.is_tf2(), 'Skipping TF1.X only test.')
class UnbatchTensorsTest(tf.test.TestCase):
def test_unbatch_without_unpadding(self):
image_placeholder = tf.placeholder(tf.float32, [2, None, None, None])
groundtruth_boxes_placeholder = tf.placeholder(tf.float32, [2, None, None])
groundtruth_classes_placeholder = tf.placeholder(tf.float32,
[2, None, None])
groundtruth_weights_placeholder = tf.placeholder(tf.float32, [2, None])
tensor_dict = {
fields.InputDataFields.image:
image_placeholder,
fields.InputDataFields.groundtruth_boxes:
groundtruth_boxes_placeholder,
fields.InputDataFields.groundtruth_classes:
groundtruth_classes_placeholder,
fields.InputDataFields.groundtruth_weights:
groundtruth_weights_placeholder
}
unbatched_tensor_dict = model_lib.unstack_batch(
tensor_dict, unpad_groundtruth_tensors=False)
with self.test_session() as sess:
unbatched_tensor_dict_out = sess.run(
unbatched_tensor_dict,
feed_dict={
image_placeholder:
np.random.rand(2, 4, 4, 3).astype(np.float32),
groundtruth_boxes_placeholder:
np.random.rand(2, 5, 4).astype(np.float32),
groundtruth_classes_placeholder:
np.random.rand(2, 5, 6).astype(np.float32),
groundtruth_weights_placeholder:
np.random.rand(2, 5).astype(np.float32)
})
for image_out in unbatched_tensor_dict_out[fields.InputDataFields.image]:
self.assertAllEqual(image_out.shape, [4, 4, 3])
for groundtruth_boxes_out in unbatched_tensor_dict_out[
fields.InputDataFields.groundtruth_boxes]:
self.assertAllEqual(groundtruth_boxes_out.shape, [5, 4])
for groundtruth_classes_out in unbatched_tensor_dict_out[
fields.InputDataFields.groundtruth_classes]:
self.assertAllEqual(groundtruth_classes_out.shape, [5, 6])
for groundtruth_weights_out in unbatched_tensor_dict_out[
fields.InputDataFields.groundtruth_weights]:
self.assertAllEqual(groundtruth_weights_out.shape, [5])
def test_unbatch_and_unpad_groundtruth_tensors(self):
image_placeholder = tf.placeholder(tf.float32, [2, None, None, None])
groundtruth_boxes_placeholder = tf.placeholder(tf.float32, [2, 5, None])
groundtruth_classes_placeholder = tf.placeholder(tf.float32, [2, 5, None])
groundtruth_weights_placeholder = tf.placeholder(tf.float32, [2, 5])
num_groundtruth_placeholder = tf.placeholder(tf.int32, [2])
tensor_dict = {
fields.InputDataFields.image:
image_placeholder,
fields.InputDataFields.groundtruth_boxes:
groundtruth_boxes_placeholder,
fields.InputDataFields.groundtruth_classes:
groundtruth_classes_placeholder,
fields.InputDataFields.groundtruth_weights:
groundtruth_weights_placeholder,
fields.InputDataFields.num_groundtruth_boxes:
num_groundtruth_placeholder
}
unbatched_tensor_dict = model_lib.unstack_batch(
tensor_dict, unpad_groundtruth_tensors=True)
with self.test_session() as sess:
unbatched_tensor_dict_out = sess.run(
unbatched_tensor_dict,
feed_dict={
image_placeholder:
np.random.rand(2, 4, 4, 3).astype(np.float32),
groundtruth_boxes_placeholder:
np.random.rand(2, 5, 4).astype(np.float32),
groundtruth_classes_placeholder:
np.random.rand(2, 5, 6).astype(np.float32),
groundtruth_weights_placeholder:
np.random.rand(2, 5).astype(np.float32),
num_groundtruth_placeholder:
np.array([3, 3], np.int32)
})
for image_out in unbatched_tensor_dict_out[fields.InputDataFields.image]:
self.assertAllEqual(image_out.shape, [4, 4, 3])
for groundtruth_boxes_out in unbatched_tensor_dict_out[
fields.InputDataFields.groundtruth_boxes]:
self.assertAllEqual(groundtruth_boxes_out.shape, [3, 4])
for groundtruth_classes_out in unbatched_tensor_dict_out[
fields.InputDataFields.groundtruth_classes]:
self.assertAllEqual(groundtruth_classes_out.shape, [3, 6])
for groundtruth_weights_out in unbatched_tensor_dict_out[
fields.InputDataFields.groundtruth_weights]:
self.assertAllEqual(groundtruth_weights_out.shape, [3])
if __name__ == '__main__':
tf.test.main()
|