File size: 10,744 Bytes
0b8359d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Tests for object_detection.matchers.argmax_matcher."""

import numpy as np
import tensorflow.compat.v1 as tf

from object_detection.matchers import argmax_matcher
from object_detection.utils import test_case


class ArgMaxMatcherTest(test_case.TestCase):

  def test_return_correct_matches_with_default_thresholds(self):

    def graph_fn(similarity_matrix):
      matcher = argmax_matcher.ArgMaxMatcher(matched_threshold=None)
      match = matcher.match(similarity_matrix)
      matched_cols = match.matched_column_indicator()
      unmatched_cols = match.unmatched_column_indicator()
      match_results = match.match_results
      return (matched_cols, unmatched_cols, match_results)

    similarity = np.array([[1., 1, 1, 3, 1],
                           [2, -1, 2, 0, 4],
                           [3, 0, -1, 0, 0]], dtype=np.float32)
    expected_matched_rows = np.array([2, 0, 1, 0, 1])
    (res_matched_cols, res_unmatched_cols,
     res_match_results) = self.execute(graph_fn, [similarity])

    self.assertAllEqual(res_match_results[res_matched_cols],
                        expected_matched_rows)
    self.assertAllEqual(np.nonzero(res_matched_cols)[0], [0, 1, 2, 3, 4])
    self.assertFalse(np.all(res_unmatched_cols))

  def test_return_correct_matches_with_empty_rows(self):

    def graph_fn(similarity_matrix):
      matcher = argmax_matcher.ArgMaxMatcher(matched_threshold=None)
      match = matcher.match(similarity_matrix)
      return match.unmatched_column_indicator()
    similarity = 0.2 * np.ones([0, 5], dtype=np.float32)
    res_unmatched_cols = self.execute(graph_fn, [similarity])
    self.assertAllEqual(np.nonzero(res_unmatched_cols)[0], np.arange(5))

  def test_return_correct_matches_with_matched_threshold(self):

    def graph_fn(similarity):
      matcher = argmax_matcher.ArgMaxMatcher(matched_threshold=3.)
      match = matcher.match(similarity)
      matched_cols = match.matched_column_indicator()
      unmatched_cols = match.unmatched_column_indicator()
      match_results = match.match_results
      return (matched_cols, unmatched_cols, match_results)

    similarity = np.array([[1, 1, 1, 3, 1],
                           [2, -1, 2, 0, 4],
                           [3, 0, -1, 0, 0]], dtype=np.float32)
    expected_matched_cols = np.array([0, 3, 4])
    expected_matched_rows = np.array([2, 0, 1])
    expected_unmatched_cols = np.array([1, 2])

    (res_matched_cols, res_unmatched_cols,
     match_results) = self.execute(graph_fn, [similarity])
    self.assertAllEqual(match_results[res_matched_cols], expected_matched_rows)
    self.assertAllEqual(np.nonzero(res_matched_cols)[0], expected_matched_cols)
    self.assertAllEqual(np.nonzero(res_unmatched_cols)[0],
                        expected_unmatched_cols)

  def test_return_correct_matches_with_matched_and_unmatched_threshold(self):

    def graph_fn(similarity):
      matcher = argmax_matcher.ArgMaxMatcher(matched_threshold=3.,
                                             unmatched_threshold=2.)
      match = matcher.match(similarity)
      matched_cols = match.matched_column_indicator()
      unmatched_cols = match.unmatched_column_indicator()
      match_results = match.match_results
      return (matched_cols, unmatched_cols, match_results)

    similarity = np.array([[1, 1, 1, 3, 1],
                           [2, -1, 2, 0, 4],
                           [3, 0, -1, 0, 0]], dtype=np.float32)
    expected_matched_cols = np.array([0, 3, 4])
    expected_matched_rows = np.array([2, 0, 1])
    expected_unmatched_cols = np.array([1])  # col 2 has too high maximum val

    (res_matched_cols, res_unmatched_cols,
     match_results) = self.execute(graph_fn, [similarity])
    self.assertAllEqual(match_results[res_matched_cols], expected_matched_rows)
    self.assertAllEqual(np.nonzero(res_matched_cols)[0], expected_matched_cols)
    self.assertAllEqual(np.nonzero(res_unmatched_cols)[0],
                        expected_unmatched_cols)

  def test_return_correct_matches_negatives_lower_than_unmatched_false(self):

    def graph_fn(similarity):
      matcher = argmax_matcher.ArgMaxMatcher(
          matched_threshold=3.,
          unmatched_threshold=2.,
          negatives_lower_than_unmatched=False)
      match = matcher.match(similarity)
      matched_cols = match.matched_column_indicator()
      unmatched_cols = match.unmatched_column_indicator()
      match_results = match.match_results
      return (matched_cols, unmatched_cols, match_results)

    similarity = np.array([[1, 1, 1, 3, 1],
                           [2, -1, 2, 0, 4],
                           [3, 0, -1, 0, 0]], dtype=np.float32)
    expected_matched_cols = np.array([0, 3, 4])
    expected_matched_rows = np.array([2, 0, 1])
    expected_unmatched_cols = np.array([2])  # col 1 has too low maximum val

    (res_matched_cols, res_unmatched_cols,
     match_results) = self.execute(graph_fn, [similarity])
    self.assertAllEqual(match_results[res_matched_cols], expected_matched_rows)
    self.assertAllEqual(np.nonzero(res_matched_cols)[0], expected_matched_cols)
    self.assertAllEqual(np.nonzero(res_unmatched_cols)[0],
                        expected_unmatched_cols)

  def test_return_correct_matches_unmatched_row_not_using_force_match(self):

    def graph_fn(similarity):
      matcher = argmax_matcher.ArgMaxMatcher(matched_threshold=3.,
                                             unmatched_threshold=2.)
      match = matcher.match(similarity)
      matched_cols = match.matched_column_indicator()
      unmatched_cols = match.unmatched_column_indicator()
      match_results = match.match_results
      return (matched_cols, unmatched_cols, match_results)

    similarity = np.array([[1, 1, 1, 3, 1],
                           [-1, 0, -2, -2, -1],
                           [3, 0, -1, 2, 0]], dtype=np.float32)
    expected_matched_cols = np.array([0, 3])
    expected_matched_rows = np.array([2, 0])
    expected_unmatched_cols = np.array([1, 2, 4])

    (res_matched_cols, res_unmatched_cols,
     match_results) = self.execute(graph_fn, [similarity])
    self.assertAllEqual(match_results[res_matched_cols], expected_matched_rows)
    self.assertAllEqual(np.nonzero(res_matched_cols)[0], expected_matched_cols)
    self.assertAllEqual(np.nonzero(res_unmatched_cols)[0],
                        expected_unmatched_cols)

  def test_return_correct_matches_unmatched_row_while_using_force_match(self):
    def graph_fn(similarity):
      matcher = argmax_matcher.ArgMaxMatcher(matched_threshold=3.,
                                             unmatched_threshold=2.,
                                             force_match_for_each_row=True)
      match = matcher.match(similarity)
      matched_cols = match.matched_column_indicator()
      unmatched_cols = match.unmatched_column_indicator()
      match_results = match.match_results
      return (matched_cols, unmatched_cols, match_results)

    similarity = np.array([[1, 1, 1, 3, 1],
                           [-1, 0, -2, -2, -1],
                           [3, 0, -1, 2, 0]], dtype=np.float32)
    expected_matched_cols = np.array([0, 1, 3])
    expected_matched_rows = np.array([2, 1, 0])
    expected_unmatched_cols = np.array([2, 4])  # col 2 has too high max val

    (res_matched_cols, res_unmatched_cols,
     match_results) = self.execute(graph_fn, [similarity])
    self.assertAllEqual(match_results[res_matched_cols], expected_matched_rows)
    self.assertAllEqual(np.nonzero(res_matched_cols)[0], expected_matched_cols)
    self.assertAllEqual(np.nonzero(res_unmatched_cols)[0],
                        expected_unmatched_cols)

  def test_return_correct_matches_using_force_match_padded_groundtruth(self):
    def graph_fn(similarity, valid_rows):
      matcher = argmax_matcher.ArgMaxMatcher(matched_threshold=3.,
                                             unmatched_threshold=2.,
                                             force_match_for_each_row=True)
      match = matcher.match(similarity, valid_rows)
      matched_cols = match.matched_column_indicator()
      unmatched_cols = match.unmatched_column_indicator()
      match_results = match.match_results
      return (matched_cols, unmatched_cols, match_results)

    similarity = np.array([[1, 1, 1, 3, 1],
                           [-1, 0, -2, -2, -1],
                           [0, 0, 0, 0, 0],
                           [3, 0, -1, 2, 0],
                           [0, 0, 0, 0, 0]], dtype=np.float32)
    valid_rows = np.array([True, True, False, True, False])
    expected_matched_cols = np.array([0, 1, 3])
    expected_matched_rows = np.array([3, 1, 0])
    expected_unmatched_cols = np.array([2, 4])  # col 2 has too high max val

    (res_matched_cols, res_unmatched_cols,
     match_results) = self.execute(graph_fn, [similarity, valid_rows])
    self.assertAllEqual(match_results[res_matched_cols], expected_matched_rows)
    self.assertAllEqual(np.nonzero(res_matched_cols)[0], expected_matched_cols)
    self.assertAllEqual(np.nonzero(res_unmatched_cols)[0],
                        expected_unmatched_cols)

  def test_valid_arguments_corner_case(self):
    argmax_matcher.ArgMaxMatcher(matched_threshold=1,
                                 unmatched_threshold=1)

  def test_invalid_arguments_corner_case_negatives_lower_than_thres_false(self):
    with self.assertRaises(ValueError):
      argmax_matcher.ArgMaxMatcher(matched_threshold=1,
                                   unmatched_threshold=1,
                                   negatives_lower_than_unmatched=False)

  def test_invalid_arguments_no_matched_threshold(self):
    with self.assertRaises(ValueError):
      argmax_matcher.ArgMaxMatcher(matched_threshold=None,
                                   unmatched_threshold=4)

  def test_invalid_arguments_unmatched_thres_larger_than_matched_thres(self):
    with self.assertRaises(ValueError):
      argmax_matcher.ArgMaxMatcher(matched_threshold=1,
                                   unmatched_threshold=2)


if __name__ == '__main__':
  tf.test.main()