File size: 6,414 Bytes
0b8359d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Keypoint box coder.

The keypoint box coder follows the coding schema described below (this is
similar to the FasterRcnnBoxCoder, except that it encodes keypoints in addition
to box coordinates):
  ty = (y - ya) / ha
  tx = (x - xa) / wa
  th = log(h / ha)
  tw = log(w / wa)
  tky0 = (ky0 - ya) / ha
  tkx0 = (kx0 - xa) / wa
  tky1 = (ky1 - ya) / ha
  tkx1 = (kx1 - xa) / wa
  ...
  where x, y, w, h denote the box's center coordinates, width and height
  respectively. Similarly, xa, ya, wa, ha denote the anchor's center
  coordinates, width and height. tx, ty, tw and th denote the anchor-encoded
  center, width and height respectively. ky0, kx0, ky1, kx1, ... denote the
  keypoints' coordinates, and tky0, tkx0, tky1, tkx1, ... denote the
  anchor-encoded keypoint coordinates.
"""

import tensorflow.compat.v1 as tf

from object_detection.core import box_coder
from object_detection.core import box_list
from object_detection.core import standard_fields as fields

EPSILON = 1e-8


class KeypointBoxCoder(box_coder.BoxCoder):
  """Keypoint box coder."""

  def __init__(self, num_keypoints, scale_factors=None):
    """Constructor for KeypointBoxCoder.

    Args:
      num_keypoints: Number of keypoints to encode/decode.
      scale_factors: List of 4 positive scalars to scale ty, tx, th and tw.
        In addition to scaling ty and tx, the first 2 scalars are used to scale
        the y and x coordinates of the keypoints as well. If set to None, does
        not perform scaling.
    """
    self._num_keypoints = num_keypoints

    if scale_factors:
      assert len(scale_factors) == 4
      for scalar in scale_factors:
        assert scalar > 0
    self._scale_factors = scale_factors
    self._keypoint_scale_factors = None
    if scale_factors is not None:
      self._keypoint_scale_factors = tf.expand_dims(
          tf.tile([
              tf.cast(scale_factors[0], dtype=tf.float32),
              tf.cast(scale_factors[1], dtype=tf.float32)
          ], [num_keypoints]), 1)

  @property
  def code_size(self):
    return 4 + self._num_keypoints * 2

  def _encode(self, boxes, anchors):
    """Encode a box and keypoint collection with respect to anchor collection.

    Args:
      boxes: BoxList holding N boxes and keypoints to be encoded. Boxes are
        tensors with the shape [N, 4], and keypoints are tensors with the shape
        [N, num_keypoints, 2].
      anchors: BoxList of anchors.

    Returns:
      a tensor representing N anchor-encoded boxes of the format
      [ty, tx, th, tw, tky0, tkx0, tky1, tkx1, ...] where tky0 and tkx0
      represent the y and x coordinates of the first keypoint, tky1 and tkx1
      represent the y and x coordinates of the second keypoint, and so on.
    """
    # Convert anchors to the center coordinate representation.
    ycenter_a, xcenter_a, ha, wa = anchors.get_center_coordinates_and_sizes()
    ycenter, xcenter, h, w = boxes.get_center_coordinates_and_sizes()
    keypoints = boxes.get_field(fields.BoxListFields.keypoints)
    keypoints = tf.transpose(tf.reshape(keypoints,
                                        [-1, self._num_keypoints * 2]))
    num_boxes = boxes.num_boxes()

    # Avoid NaN in division and log below.
    ha += EPSILON
    wa += EPSILON
    h += EPSILON
    w += EPSILON

    tx = (xcenter - xcenter_a) / wa
    ty = (ycenter - ycenter_a) / ha
    tw = tf.log(w / wa)
    th = tf.log(h / ha)

    tiled_anchor_centers = tf.tile(
        tf.stack([ycenter_a, xcenter_a]), [self._num_keypoints, 1])
    tiled_anchor_sizes = tf.tile(
        tf.stack([ha, wa]), [self._num_keypoints, 1])
    tkeypoints = (keypoints - tiled_anchor_centers) / tiled_anchor_sizes

    # Scales location targets as used in paper for joint training.
    if self._scale_factors:
      ty *= self._scale_factors[0]
      tx *= self._scale_factors[1]
      th *= self._scale_factors[2]
      tw *= self._scale_factors[3]
      tkeypoints *= tf.tile(self._keypoint_scale_factors, [1, num_boxes])

    tboxes = tf.stack([ty, tx, th, tw])
    return tf.transpose(tf.concat([tboxes, tkeypoints], 0))

  def _decode(self, rel_codes, anchors):
    """Decode relative codes to boxes and keypoints.

    Args:
      rel_codes: a tensor with shape [N, 4 + 2 * num_keypoints] representing N
        anchor-encoded boxes and keypoints
      anchors: BoxList of anchors.

    Returns:
      boxes: BoxList holding N bounding boxes and keypoints.
    """
    ycenter_a, xcenter_a, ha, wa = anchors.get_center_coordinates_and_sizes()

    num_codes = tf.shape(rel_codes)[0]
    result = tf.unstack(tf.transpose(rel_codes))
    ty, tx, th, tw = result[:4]
    tkeypoints = result[4:]
    if self._scale_factors:
      ty /= self._scale_factors[0]
      tx /= self._scale_factors[1]
      th /= self._scale_factors[2]
      tw /= self._scale_factors[3]
      tkeypoints /= tf.tile(self._keypoint_scale_factors, [1, num_codes])

    w = tf.exp(tw) * wa
    h = tf.exp(th) * ha
    ycenter = ty * ha + ycenter_a
    xcenter = tx * wa + xcenter_a
    ymin = ycenter - h / 2.
    xmin = xcenter - w / 2.
    ymax = ycenter + h / 2.
    xmax = xcenter + w / 2.
    decoded_boxes_keypoints = box_list.BoxList(
        tf.transpose(tf.stack([ymin, xmin, ymax, xmax])))

    tiled_anchor_centers = tf.tile(
        tf.stack([ycenter_a, xcenter_a]), [self._num_keypoints, 1])
    tiled_anchor_sizes = tf.tile(
        tf.stack([ha, wa]), [self._num_keypoints, 1])
    keypoints = tkeypoints * tiled_anchor_sizes + tiled_anchor_centers
    keypoints = tf.reshape(tf.transpose(keypoints),
                           [-1, self._num_keypoints, 2])
    decoded_boxes_keypoints.add_field(fields.BoxListFields.keypoints, keypoints)
    return decoded_boxes_keypoints