File size: 25,938 Bytes
0b8359d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

# Dependency imports

import tensorflow as tf

FLAGS = tf.app.flags.FLAGS


def rnn_nas(hparams, model):
  assert model == 'gen' or model == 'dis'

  # This logic is only valid for rnn_zaremba
  if model == 'gen':
    assert FLAGS.generator_model == 'rnn_nas'
    assert hparams.gen_num_layers == 2

  if model == 'dis':
    assert FLAGS.discriminator_model == 'rnn_nas'
    assert hparams.dis_num_layers == 2

  # Output variables only for the Generator.  Discriminator output biases
  # will begin randomly initialized.
  if model == 'gen':
    softmax_b = [
        v for v in tf.trainable_variables() if v.op.name == 'gen/rnn/softmax_b'
    ][0]

  # Common elements to Generator and Discriminator.
  embedding = [
      v for v in tf.trainable_variables()
      if v.op.name == str(model) + '/rnn/embedding'
  ][0]
  lstm_w_0 = [
      v for v in tf.trainable_variables()
      if v.op.name ==
      str(model) + '/rnn/GenericMultiRNNCell/Cell0/Alien/rnn_builder/big_h_mat'
  ][0]
  lstm_b_0 = [
      v for v in tf.trainable_variables()
      if v.op.name == str(model) +
      '/rnn/GenericMultiRNNCell/Cell0/Alien/rnn_builder/big_inputs_mat'
  ][0]
  lstm_w_1 = [
      v for v in tf.trainable_variables()
      if v.op.name ==
      str(model) + '/rnn/GenericMultiRNNCell/Cell1/Alien/rnn_builder/big_h_mat'
  ][0]
  lstm_b_1 = [
      v for v in tf.trainable_variables()
      if v.op.name == str(model) +
      '/rnn/GenericMultiRNNCell/Cell1/Alien/rnn_builder/big_inputs_mat'
  ][0]

  # Dictionary mapping.
  if model == 'gen':
    variable_mapping = {
        'Model/embeddings/input_embedding':
            embedding,
        'Model/RNN/GenericMultiRNNCell/Cell0/Alien/rnn_builder/big_h_mat':
            lstm_w_0,
        'Model/RNN/GenericMultiRNNCell/Cell0/Alien/rnn_builder/big_inputs_mat':
            lstm_b_0,
        'Model/RNN/GenericMultiRNNCell/Cell1/Alien/rnn_builder/big_h_mat':
            lstm_w_1,
        'Model/RNN/GenericMultiRNNCell/Cell1/Alien/rnn_builder/big_inputs_mat':
            lstm_b_1,
        'Model/softmax_b':
            softmax_b
    }
  else:
    variable_mapping = {
        'Model/embeddings/input_embedding':
            embedding,
        'Model/RNN/GenericMultiRNNCell/Cell0/Alien/rnn_builder/big_h_mat':
            lstm_w_0,
        'Model/RNN/GenericMultiRNNCell/Cell0/Alien/rnn_builder/big_inputs_mat':
            lstm_b_0,
        'Model/RNN/GenericMultiRNNCell/Cell1/Alien/rnn_builder/big_h_mat':
            lstm_w_1,
        'Model/RNN/GenericMultiRNNCell/Cell1/Alien/rnn_builder/big_inputs_mat':
            lstm_b_1
    }

  return variable_mapping


def cnn():
  """Variable mapping for the CNN embedding.

  Returns:
    variable_mapping:  Dictionary with Key: ckpt_name, Value: model_var.
  """
  # This logic is only valid for cnn
  assert FLAGS.discriminator_model == 'cnn'

  # Retrieve CNN embedding.
  embedding = [
      v for v in tf.trainable_variables() if v.op.name == 'dis/embedding'
  ][0]

  # Variable mapping.
  variable_mapping = {'Model/embedding': embedding}

  return variable_mapping


def rnn_zaremba(hparams, model):
  """Returns the PTB Variable name to MaskGAN Variable dictionary mapping.  This
  is a highly restrictive function just for testing.  This will need to be
  generalized.

  Args:
    hparams:  Hyperparameters for the MaskGAN.
    model:  Model type, one of ['gen', 'dis'].

  Returns:
    variable_mapping:  Dictionary with Key: ckpt_name, Value: model_var.
  """
  assert model == 'gen' or model == 'dis'

  # This logic is only valid for rnn_zaremba
  if model == 'gen':
    assert FLAGS.generator_model == 'rnn_zaremba'
    assert hparams.gen_num_layers == 2

  if model == 'dis':
    assert (FLAGS.discriminator_model == 'rnn_zaremba' or
            FLAGS.discriminator_model == 'rnn_vd')
    assert hparams.dis_num_layers == 2

  # Output variables only for the Generator.  Discriminator output weights
  # and biases will begin randomly initialized.
  if model == 'gen':
    softmax_w = [
        v for v in tf.trainable_variables() if v.op.name == 'gen/rnn/softmax_w'
    ][0]
    softmax_b = [
        v for v in tf.trainable_variables() if v.op.name == 'gen/rnn/softmax_b'
    ][0]

  # Common elements to Generator and Discriminator.
  if not FLAGS.dis_share_embedding or model != 'dis':
    embedding = [
        v for v in tf.trainable_variables()
        if v.op.name == str(model) + '/rnn/embedding'
    ][0]
  lstm_w_0 = [
      v for v in tf.trainable_variables() if v.op.name == str(model) +
      '/rnn/multi_rnn_cell/cell_0/basic_lstm_cell/kernel'
  ][0]
  lstm_b_0 = [
      v for v in tf.trainable_variables() if v.op.name == str(model) +
      '/rnn/multi_rnn_cell/cell_0/basic_lstm_cell/bias'
  ][0]
  lstm_w_1 = [
      v for v in tf.trainable_variables() if v.op.name == str(model) +
      '/rnn/multi_rnn_cell/cell_1/basic_lstm_cell/kernel'
  ][0]
  lstm_b_1 = [
      v for v in tf.trainable_variables() if v.op.name == str(model) +
      '/rnn/multi_rnn_cell/cell_1/basic_lstm_cell/bias'
  ][0]

  # Dictionary mapping.
  if model == 'gen':
    variable_mapping = {
        'Model/embedding': embedding,
        'Model/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/kernel': lstm_w_0,
        'Model/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/bias': lstm_b_0,
        'Model/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/kernel': lstm_w_1,
        'Model/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/bias': lstm_b_1,
        'Model/softmax_w': softmax_w,
        'Model/softmax_b': softmax_b
    }
  else:
    if FLAGS.dis_share_embedding:
      variable_mapping = {
          'Model/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/kernel': lstm_w_0,
          'Model/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/bias': lstm_b_0,
          'Model/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/kernel': lstm_w_1,
          'Model/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/bias': lstm_b_1
      }
    else:
      variable_mapping = {
          'Model/embedding': embedding,
          'Model/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/kernel': lstm_w_0,
          'Model/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/bias': lstm_b_0,
          'Model/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/kernel': lstm_w_1,
          'Model/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/bias': lstm_b_1
      }

  return variable_mapping


def gen_encoder_seq2seq_nas(hparams):
  """Returns the NAS Variable name to MaskGAN Variable
  dictionary mapping.  This is a highly restrictive function just for testing.
  This is for the *unidirecitional* seq2seq_nas encoder.

  Args:
    hparams:  Hyperparameters for the MaskGAN.

  Returns:
    variable_mapping:  Dictionary with Key: ckpt_name, Value: model_varself.
  """
  assert FLAGS.generator_model == 'seq2seq_nas'
  assert hparams.gen_num_layers == 2
  ## Encoder forward variables.

  if not FLAGS.seq2seq_share_embedding:
    encoder_embedding = [
        v for v in tf.trainable_variables()
        if v.op.name == 'gen/encoder/rnn/embedding'
    ][0]
  encoder_lstm_w_0 = [
      v for v in tf.trainable_variables()
      if v.op.name ==
      'gen/encoder/rnn/GenericMultiRNNCell/Cell0/Alien/rnn_builder/big_h_mat'
  ][0]
  encoder_lstm_b_0 = [
      v for v in tf.trainable_variables()
      if v.op.name ==
      'gen/encoder/rnn/GenericMultiRNNCell/Cell0/Alien/rnn_builder/big_inputs_mat'
  ][0]
  encoder_lstm_w_1 = [
      v for v in tf.trainable_variables()
      if v.op.name ==
      'gen/encoder/rnn/GenericMultiRNNCell/Cell1/Alien/rnn_builder/big_h_mat'
  ][0]
  encoder_lstm_b_1 = [
      v for v in tf.trainable_variables()
      if v.op.name ==
      'gen/encoder/rnn/GenericMultiRNNCell/Cell1/Alien/rnn_builder/big_inputs_mat'
  ][0]

  if not FLAGS.seq2seq_share_embedding:
    variable_mapping = {
        'Model/embeddings/input_embedding':
            encoder_embedding,
        'Model/RNN/GenericMultiRNNCell/Cell0/Alien/rnn_builder/big_h_mat':
            encoder_lstm_w_0,
        'Model/RNN/GenericMultiRNNCell/Cell0/Alien/rnn_builder/big_inputs_mat':
            encoder_lstm_b_0,
        'Model/RNN/GenericMultiRNNCell/Cell1/Alien/rnn_builder/big_h_mat':
            encoder_lstm_w_1,
        'Model/RNN/GenericMultiRNNCell/Cell1/Alien/rnn_builder/big_inputs_mat':
            encoder_lstm_b_1
    }
  else:
    variable_mapping = {
        'Model/RNN/GenericMultiRNNCell/Cell0/Alien/rnn_builder/big_h_mat':
            encoder_lstm_w_0,
        'Model/RNN/GenericMultiRNNCell/Cell0/Alien/rnn_builder/big_inputs_mat':
            encoder_lstm_b_0,
        'Model/RNN/GenericMultiRNNCell/Cell1/Alien/rnn_builder/big_h_mat':
            encoder_lstm_w_1,
        'Model/RNN/GenericMultiRNNCell/Cell1/Alien/rnn_builder/big_inputs_mat':
            encoder_lstm_b_1
    }
  return variable_mapping


def gen_decoder_seq2seq_nas(hparams):
  assert FLAGS.generator_model == 'seq2seq_nas'
  assert hparams.gen_num_layers == 2

  decoder_embedding = [
      v for v in tf.trainable_variables()
      if v.op.name == 'gen/decoder/rnn/embedding'
  ][0]
  decoder_lstm_w_0 = [
      v for v in tf.trainable_variables()
      if v.op.name ==
      'gen/decoder/rnn/GenericMultiRNNCell/Cell0/Alien/rnn_builder/big_h_mat'
  ][0]
  decoder_lstm_b_0 = [
      v for v in tf.trainable_variables()
      if v.op.name ==
      'gen/decoder/rnn/GenericMultiRNNCell/Cell0/Alien/rnn_builder/big_inputs_mat'
  ][0]
  decoder_lstm_w_1 = [
      v for v in tf.trainable_variables()
      if v.op.name ==
      'gen/decoder/rnn/GenericMultiRNNCell/Cell1/Alien/rnn_builder/big_h_mat'
  ][0]
  decoder_lstm_b_1 = [
      v for v in tf.trainable_variables()
      if v.op.name ==
      'gen/decoder/rnn/GenericMultiRNNCell/Cell1/Alien/rnn_builder/big_inputs_mat'
  ][0]

  decoder_softmax_b = [
      v for v in tf.trainable_variables()
      if v.op.name == 'gen/decoder/rnn/softmax_b'
  ][0]

  variable_mapping = {
      'Model/embeddings/input_embedding':
          decoder_embedding,
      'Model/RNN/GenericMultiRNNCell/Cell0/Alien/rnn_builder/big_h_mat':
          decoder_lstm_w_0,
      'Model/RNN/GenericMultiRNNCell/Cell0/Alien/rnn_builder/big_inputs_mat':
          decoder_lstm_b_0,
      'Model/RNN/GenericMultiRNNCell/Cell1/Alien/rnn_builder/big_h_mat':
          decoder_lstm_w_1,
      'Model/RNN/GenericMultiRNNCell/Cell1/Alien/rnn_builder/big_inputs_mat':
          decoder_lstm_b_1,
      'Model/softmax_b':
          decoder_softmax_b
  }

  return variable_mapping


def gen_encoder_seq2seq(hparams):
  """Returns the PTB Variable name to MaskGAN Variable
  dictionary mapping.  This is a highly restrictive function just for testing.
  This is foe the *unidirecitional* seq2seq_zaremba encoder.

  Args:
    hparams:  Hyperparameters for the MaskGAN.

  Returns:
    variable_mapping:  Dictionary with Key: ckpt_name, Value: model_varself.
  """
  assert (FLAGS.generator_model == 'seq2seq_zaremba' or
          FLAGS.generator_model == 'seq2seq_vd')
  assert hparams.gen_num_layers == 2

  ## Encoder forward variables.
  if not FLAGS.seq2seq_share_embedding:
    encoder_embedding = [
        v for v in tf.trainable_variables()
        if v.op.name == 'gen/encoder/rnn/embedding'
    ][0]
  encoder_lstm_w_0 = [
      v for v in tf.trainable_variables() if v.op.name ==
      'gen/encoder/rnn/multi_rnn_cell/cell_0/basic_lstm_cell/kernel'
  ][0]
  encoder_lstm_b_0 = [
      v for v in tf.trainable_variables() if v.op.name ==
      'gen/encoder/rnn/multi_rnn_cell/cell_0/basic_lstm_cell/bias'
  ][0]
  encoder_lstm_w_1 = [
      v for v in tf.trainable_variables() if v.op.name ==
      'gen/encoder/rnn/multi_rnn_cell/cell_1/basic_lstm_cell/kernel'
  ][0]
  encoder_lstm_b_1 = [
      v for v in tf.trainable_variables() if v.op.name ==
      'gen/encoder/rnn/multi_rnn_cell/cell_1/basic_lstm_cell/bias'
  ][0]

  if FLAGS.data_set == 'ptb':
    model_str = 'Model'
  else:
    model_str = 'model'

  if not FLAGS.seq2seq_share_embedding:
    variable_mapping = {
        str(model_str) + '/embedding':
            encoder_embedding,
        str(model_str) + '/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/kernel':
            encoder_lstm_w_0,
        str(model_str) + '/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/bias':
            encoder_lstm_b_0,
        str(model_str) + '/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/kernel':
            encoder_lstm_w_1,
        str(model_str) + '/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/bias':
            encoder_lstm_b_1
    }
  else:
    variable_mapping = {
        str(model_str) + '/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/kernel':
            encoder_lstm_w_0,
        str(model_str) + '/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/bias':
            encoder_lstm_b_0,
        str(model_str) + '/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/kernel':
            encoder_lstm_w_1,
        str(model_str) + '/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/bias':
            encoder_lstm_b_1
    }
  return variable_mapping


def gen_decoder_seq2seq(hparams):
  assert (FLAGS.generator_model == 'seq2seq_zaremba' or
          FLAGS.generator_model == 'seq2seq_vd')
  assert hparams.gen_num_layers == 2

  decoder_embedding = [
      v for v in tf.trainable_variables()
      if v.op.name == 'gen/decoder/rnn/embedding'
  ][0]
  decoder_lstm_w_0 = [
      v for v in tf.trainable_variables() if v.op.name ==
      'gen/decoder/rnn/multi_rnn_cell/cell_0/basic_lstm_cell/kernel'
  ][0]
  decoder_lstm_b_0 = [
      v for v in tf.trainable_variables() if v.op.name ==
      'gen/decoder/rnn/multi_rnn_cell/cell_0/basic_lstm_cell/bias'
  ][0]
  decoder_lstm_w_1 = [
      v for v in tf.trainable_variables() if v.op.name ==
      'gen/decoder/rnn/multi_rnn_cell/cell_1/basic_lstm_cell/kernel'
  ][0]
  decoder_lstm_b_1 = [
      v for v in tf.trainable_variables() if v.op.name ==
      'gen/decoder/rnn/multi_rnn_cell/cell_1/basic_lstm_cell/bias'
  ][0]
  decoder_softmax_b = [
      v for v in tf.trainable_variables()
      if v.op.name == 'gen/decoder/rnn/softmax_b'
  ][0]

  if FLAGS.data_set == 'ptb':
    model_str = 'Model'
  else:
    model_str = 'model'

  variable_mapping = {
      str(model_str) + '/embedding':
          decoder_embedding,
      str(model_str) + '/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/kernel':
          decoder_lstm_w_0,
      str(model_str) + '/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/bias':
          decoder_lstm_b_0,
      str(model_str) + '/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/kernel':
          decoder_lstm_w_1,
      str(model_str) + '/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/bias':
          decoder_lstm_b_1,
      str(model_str) + '/softmax_b':
          decoder_softmax_b
  }
  return variable_mapping


def dis_fwd_bidirectional(hparams):
  """Returns the *forward* PTB Variable name to MaskGAN Variable dictionary
  mapping.  This is a highly restrictive function just for testing. This is for
  the bidirectional_zaremba discriminator.

  Args:
    FLAGS:  Flags for the model.
    hparams:  Hyperparameters for the MaskGAN.

  Returns:
    variable_mapping:  Dictionary with Key: ckpt_name, Value: model_varself.
  """
  assert (FLAGS.discriminator_model == 'bidirectional_zaremba' or
          FLAGS.discriminator_model == 'bidirectional_vd')
  assert hparams.dis_num_layers == 2

  # Forward Discriminator Elements.
  if not FLAGS.dis_share_embedding:
    embedding = [
        v for v in tf.trainable_variables() if v.op.name == 'dis/embedding'
    ][0]
  fw_lstm_w_0 = [
      v for v in tf.trainable_variables()
      if v.op.name == 'dis/rnn/fw/multi_rnn_cell/cell_0/basic_lstm_cell/kernel'
  ][0]
  fw_lstm_b_0 = [
      v for v in tf.trainable_variables()
      if v.op.name == 'dis/rnn/fw/multi_rnn_cell/cell_0/basic_lstm_cell/bias'
  ][0]
  fw_lstm_w_1 = [
      v for v in tf.trainable_variables()
      if v.op.name == 'dis/rnn/fw/multi_rnn_cell/cell_1/basic_lstm_cell/kernel'
  ][0]
  fw_lstm_b_1 = [
      v for v in tf.trainable_variables()
      if v.op.name == 'dis/rnn/fw/multi_rnn_cell/cell_1/basic_lstm_cell/bias'
  ][0]
  if FLAGS.dis_share_embedding:
    variable_mapping = {
        'Model/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/kernel': fw_lstm_w_0,
        'Model/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/bias': fw_lstm_b_0,
        'Model/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/kernel': fw_lstm_w_1,
        'Model/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/bias': fw_lstm_b_1
    }
  else:
    variable_mapping = {
        'Model/embedding': embedding,
        'Model/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/kernel': fw_lstm_w_0,
        'Model/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/bias': fw_lstm_b_0,
        'Model/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/kernel': fw_lstm_w_1,
        'Model/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/bias': fw_lstm_b_1
    }
  return variable_mapping


def dis_bwd_bidirectional(hparams):
  """Returns the *backward* PTB Variable name to MaskGAN Variable dictionary
  mapping.  This is a highly restrictive function just for testing. This is for
  the bidirectional_zaremba discriminator.

  Args:
    hparams:  Hyperparameters for the MaskGAN.

  Returns:
    variable_mapping:  Dictionary with Key: ckpt_name, Value: model_varself.
  """
  assert (FLAGS.discriminator_model == 'bidirectional_zaremba' or
          FLAGS.discriminator_model == 'bidirectional_vd')
  assert hparams.dis_num_layers == 2

  # Backward Discriminator Elements.
  bw_lstm_w_0 = [
      v for v in tf.trainable_variables()
      if v.op.name == 'dis/rnn/bw/multi_rnn_cell/cell_0/basic_lstm_cell/kernel'
  ][0]
  bw_lstm_b_0 = [
      v for v in tf.trainable_variables()
      if v.op.name == 'dis/rnn/bw/multi_rnn_cell/cell_0/basic_lstm_cell/bias'
  ][0]
  bw_lstm_w_1 = [
      v for v in tf.trainable_variables()
      if v.op.name == 'dis/rnn/bw/multi_rnn_cell/cell_1/basic_lstm_cell/kernel'
  ][0]
  bw_lstm_b_1 = [
      v for v in tf.trainable_variables()
      if v.op.name == 'dis/rnn/bw/multi_rnn_cell/cell_1/basic_lstm_cell/bias'
  ][0]

  variable_mapping = {
      'Model/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/kernel': bw_lstm_w_0,
      'Model/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/bias': bw_lstm_b_0,
      'Model/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/kernel': bw_lstm_w_1,
      'Model/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/bias': bw_lstm_b_1
  }
  return variable_mapping


def dis_encoder_seq2seq(hparams):
  """Returns the PTB Variable name to MaskGAN Variable
  dictionary mapping.

  Args:
    hparams:  Hyperparameters for the MaskGAN.

  Returns:
    variable_mapping:  Dictionary with Key: ckpt_name, Value: model_varself.
  """
  assert FLAGS.discriminator_model == 'seq2seq_vd'
  assert hparams.dis_num_layers == 2

  ## Encoder forward variables.
  encoder_lstm_w_0 = [
      v for v in tf.trainable_variables() if v.op.name ==
      'dis/encoder/rnn/multi_rnn_cell/cell_0/basic_lstm_cell/kernel'
  ][0]
  encoder_lstm_b_0 = [
      v for v in tf.trainable_variables() if v.op.name ==
      'dis/encoder/rnn/multi_rnn_cell/cell_0/basic_lstm_cell/bias'
  ][0]
  encoder_lstm_w_1 = [
      v for v in tf.trainable_variables() if v.op.name ==
      'dis/encoder/rnn/multi_rnn_cell/cell_1/basic_lstm_cell/kernel'
  ][0]
  encoder_lstm_b_1 = [
      v for v in tf.trainable_variables() if v.op.name ==
      'dis/encoder/rnn/multi_rnn_cell/cell_1/basic_lstm_cell/bias'
  ][0]

  if FLAGS.data_set == 'ptb':
    model_str = 'Model'
  else:
    model_str = 'model'

  variable_mapping = {
      str(model_str) + '/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/kernel':
          encoder_lstm_w_0,
      str(model_str) + '/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/bias':
          encoder_lstm_b_0,
      str(model_str) + '/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/kernel':
          encoder_lstm_w_1,
      str(model_str) + '/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/bias':
          encoder_lstm_b_1
  }
  return variable_mapping


def dis_decoder_seq2seq(hparams):
  assert FLAGS.discriminator_model == 'seq2seq_vd'
  assert hparams.dis_num_layers == 2

  if not FLAGS.dis_share_embedding:
    decoder_embedding = [
        v for v in tf.trainable_variables()
        if v.op.name == 'dis/decoder/rnn/embedding'
    ][0]
  decoder_lstm_w_0 = [
      v for v in tf.trainable_variables() if v.op.name ==
      'dis/decoder/rnn/multi_rnn_cell/cell_0/basic_lstm_cell/kernel'
  ][0]
  decoder_lstm_b_0 = [
      v for v in tf.trainable_variables() if v.op.name ==
      'dis/decoder/rnn/multi_rnn_cell/cell_0/basic_lstm_cell/bias'
  ][0]
  decoder_lstm_w_1 = [
      v for v in tf.trainable_variables() if v.op.name ==
      'dis/decoder/rnn/multi_rnn_cell/cell_1/basic_lstm_cell/kernel'
  ][0]
  decoder_lstm_b_1 = [
      v for v in tf.trainable_variables() if v.op.name ==
      'dis/decoder/rnn/multi_rnn_cell/cell_1/basic_lstm_cell/bias'
  ][0]

  if FLAGS.data_set == 'ptb':
    model_str = 'Model'
  else:
    model_str = 'model'

  if not FLAGS.dis_share_embedding:
    variable_mapping = {
        str(model_str) + '/embedding':
            decoder_embedding,
        str(model_str) + '/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/kernel':
            decoder_lstm_w_0,
        str(model_str) + '/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/bias':
            decoder_lstm_b_0,
        str(model_str) + '/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/kernel':
            decoder_lstm_w_1,
        str(model_str) + '/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/bias':
            decoder_lstm_b_1
    }
  else:
    variable_mapping = {
        str(model_str) + '/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/kernel':
            decoder_lstm_w_0,
        str(model_str) + '/RNN/multi_rnn_cell/cell_0/basic_lstm_cell/bias':
            decoder_lstm_b_0,
        str(model_str) + '/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/kernel':
            decoder_lstm_w_1,
        str(model_str) + '/RNN/multi_rnn_cell/cell_1/basic_lstm_cell/bias':
            decoder_lstm_b_1,
    }
  return variable_mapping


def dis_seq2seq_vd(hparams):
  assert FLAGS.discriminator_model == 'seq2seq_vd'
  assert hparams.dis_num_layers == 2

  if not FLAGS.dis_share_embedding:
    decoder_embedding = [
        v for v in tf.trainable_variables()
        if v.op.name == 'dis/decoder/rnn/embedding'
    ][0]

  ## Encoder variables.
  encoder_lstm_w_0 = [
      v for v in tf.trainable_variables() if v.op.name ==
      'dis/encoder/rnn/multi_rnn_cell/cell_0/basic_lstm_cell/kernel'
  ][0]
  encoder_lstm_b_0 = [
      v for v in tf.trainable_variables() if v.op.name ==
      'dis/encoder/rnn/multi_rnn_cell/cell_0/basic_lstm_cell/bias'
  ][0]
  encoder_lstm_w_1 = [
      v for v in tf.trainable_variables() if v.op.name ==
      'dis/encoder/rnn/multi_rnn_cell/cell_1/basic_lstm_cell/kernel'
  ][0]
  encoder_lstm_b_1 = [
      v for v in tf.trainable_variables() if v.op.name ==
      'dis/encoder/rnn/multi_rnn_cell/cell_1/basic_lstm_cell/bias'
  ][0]

  ## Attention.
  if FLAGS.attention_option is not None:
    decoder_attention_keys = [
        v for v in tf.trainable_variables()
        if v.op.name == 'dis/decoder/attention_keys/weights'
    ][0]
    decoder_attention_construct_weights = [
        v for v in tf.trainable_variables()
        if v.op.name == 'dis/decoder/rnn/attention_construct/weights'
    ][0]

  ## Decoder.
  decoder_lstm_w_0 = [
      v for v in tf.trainable_variables() if v.op.name ==
      'dis/decoder/rnn/multi_rnn_cell/cell_0/basic_lstm_cell/kernel'
  ][0]
  decoder_lstm_b_0 = [
      v for v in tf.trainable_variables() if v.op.name ==
      'dis/decoder/rnn/multi_rnn_cell/cell_0/basic_lstm_cell/bias'
  ][0]
  decoder_lstm_w_1 = [
      v for v in tf.trainable_variables() if v.op.name ==
      'dis/decoder/rnn/multi_rnn_cell/cell_1/basic_lstm_cell/kernel'
  ][0]
  decoder_lstm_b_1 = [
      v for v in tf.trainable_variables() if v.op.name ==
      'dis/decoder/rnn/multi_rnn_cell/cell_1/basic_lstm_cell/bias'
  ][0]

  # Standard variable mappings.
  variable_mapping = {
      'gen/encoder/rnn/multi_rnn_cell/cell_0/basic_lstm_cell/kernel':
          encoder_lstm_w_0,
      'gen/encoder/rnn/multi_rnn_cell/cell_0/basic_lstm_cell/bias':
          encoder_lstm_b_0,
      'gen/encoder/rnn/multi_rnn_cell/cell_1/basic_lstm_cell/kernel':
          encoder_lstm_w_1,
      'gen/encoder/rnn/multi_rnn_cell/cell_1/basic_lstm_cell/bias':
          encoder_lstm_b_1,
      'gen/decoder/rnn/multi_rnn_cell/cell_0/basic_lstm_cell/kernel':
          decoder_lstm_w_0,
      'gen/decoder/rnn/multi_rnn_cell/cell_0/basic_lstm_cell/bias':
          decoder_lstm_b_0,
      'gen/decoder/rnn/multi_rnn_cell/cell_1/basic_lstm_cell/kernel':
          decoder_lstm_w_1,
      'gen/decoder/rnn/multi_rnn_cell/cell_1/basic_lstm_cell/bias':
          decoder_lstm_b_1
  }

  # Optional variable mappings.
  if not FLAGS.dis_share_embedding:
    variable_mapping['gen/decoder/rnn/embedding'] = decoder_embedding
  if FLAGS.attention_option is not None:
    variable_mapping[
        'gen/decoder/attention_keys/weights'] = decoder_attention_keys
    variable_mapping[
        'gen/decoder/rnn/attention_construct/weights'] = decoder_attention_construct_weights

  return variable_mapping