Spaces:
Running
Running
File size: 11,355 Bytes
0b8359d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 |
# Copyright 2017 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# ==============================================================================
from __future__ import print_function
import h5py
import numpy as np
import os
from utils import write_datasets
import matplotlib
import matplotlib.pyplot as plt
import scipy.signal
def generate_rnn(rng, N, g, tau, dt, max_firing_rate):
"""Create a (vanilla) RNN with a bunch of hyper parameters for generating
chaotic data.
Args:
rng: numpy random number generator
N: number of hidden units
g: scaling of recurrent weight matrix in g W, with W ~ N(0,1/N)
tau: time scale of individual unit dynamics
dt: time step for equation updates
max_firing_rate: how to resecale the -1,1 firing rates
Returns:
the dictionary of these parameters, plus some others.
"""
rnn = {}
rnn['N'] = N
rnn['W'] = rng.randn(N,N)/np.sqrt(N)
rnn['Bin'] = rng.randn(N)/np.sqrt(1.0)
rnn['Bin2'] = rng.randn(N)/np.sqrt(1.0)
rnn['b'] = np.zeros(N)
rnn['g'] = g
rnn['tau'] = tau
rnn['dt'] = dt
rnn['max_firing_rate'] = max_firing_rate
mfr = rnn['max_firing_rate'] # spikes / sec
nbins_per_sec = 1.0/rnn['dt'] # bins / sec
# Used for plotting in LFADS
rnn['conversion_factor'] = mfr / nbins_per_sec # spikes / bin
return rnn
def generate_data(rnn, T, E, x0s=None, P_sxn=None, input_magnitude=0.0,
input_times=None):
""" Generates data from an randomly initialized RNN.
Args:
rnn: the rnn
T: Time in seconds to run (divided by rnn['dt'] to get steps, rounded down.
E: total number of examples
S: number of samples (subsampling N)
Returns:
A list of length E of NxT tensors of the network being run.
"""
N = rnn['N']
def run_rnn(rnn, x0, ntime_steps, input_time=None):
rs = np.zeros([N,ntime_steps])
x_tm1 = x0
r_tm1 = np.tanh(x0)
tau = rnn['tau']
dt = rnn['dt']
alpha = (1.0-dt/tau)
W = dt/tau*rnn['W']*rnn['g']
Bin = dt/tau*rnn['Bin']
Bin2 = dt/tau*rnn['Bin2']
b = dt/tau*rnn['b']
us = np.zeros([1, ntime_steps])
for t in range(ntime_steps):
x_t = alpha*x_tm1 + np.dot(W,r_tm1) + b
if input_time is not None and t == input_time:
us[0,t] = input_magnitude
x_t += Bin * us[0,t] # DCS is this what was used?
r_t = np.tanh(x_t)
x_tm1 = x_t
r_tm1 = r_t
rs[:,t] = r_t
return rs, us
if P_sxn is None:
P_sxn = np.eye(N)
ntime_steps = int(T / rnn['dt'])
data_e = []
inputs_e = []
for e in range(E):
input_time = input_times[e] if input_times is not None else None
r_nxt, u_uxt = run_rnn(rnn, x0s[:,e], ntime_steps, input_time)
r_sxt = np.dot(P_sxn, r_nxt)
inputs_e.append(u_uxt)
data_e.append(r_sxt)
S = P_sxn.shape[0]
data_e = normalize_rates(data_e, E, S)
return data_e, x0s, inputs_e
def normalize_rates(data_e, E, S):
# Normalization, made more complex because of the P matrices.
# Normalize by min and max in each channel. This normalization will
# cause offset differences between identical rnn runs, but different
# t hits.
for e in range(E):
r_sxt = data_e[e]
for i in range(S):
rmin = np.min(r_sxt[i,:])
rmax = np.max(r_sxt[i,:])
assert rmax - rmin != 0, 'Something wrong'
r_sxt[i,:] = (r_sxt[i,:] - rmin)/(rmax-rmin)
data_e[e] = r_sxt
return data_e
def spikify_data(data_e, rng, dt=1.0, max_firing_rate=100):
""" Apply spikes to a continuous dataset whose values are between 0.0 and 1.0
Args:
data_e: nexamples length list of NxT trials
dt: how often the data are sampled
max_firing_rate: the firing rate that is associated with a value of 1.0
Returns:
spikified_e: a list of length b of the data represented as spikes,
sampled from the underlying poisson process.
"""
E = len(data_e)
spikes_e = []
for e in range(E):
data = data_e[e]
N,T = data.shape
data_s = np.zeros([N,T]).astype(np.int)
for n in range(N):
f = data[n,:]
s = rng.poisson(f*max_firing_rate*dt, size=T)
data_s[n,:] = s
spikes_e.append(data_s)
return spikes_e
def gaussify_data(data_e, rng, dt=1.0, max_firing_rate=100):
""" Apply gaussian noise to a continuous dataset whose values are between
0.0 and 1.0
Args:
data_e: nexamples length list of NxT trials
dt: how often the data are sampled
max_firing_rate: the firing rate that is associated with a value of 1.0
Returns:
gauss_e: a list of length b of the data with noise.
"""
E = len(data_e)
mfr = max_firing_rate
gauss_e = []
for e in range(E):
data = data_e[e]
N,T = data.shape
noisy_data = data * mfr + np.random.randn(N,T) * (5.0*mfr) * np.sqrt(dt)
gauss_e.append(noisy_data)
return gauss_e
def get_train_n_valid_inds(num_trials, train_fraction, nreplications):
"""Split the numbers between 0 and num_trials-1 into two portions for
training and validation, based on the train fraction.
Args:
num_trials: the number of trials
train_fraction: (e.g. .80)
nreplications: the number of spiking trials per initial condition
Returns:
a 2-tuple of two lists: the training indices and validation indices
"""
train_inds = []
valid_inds = []
for i in range(num_trials):
# This line divides up the trials so that within one initial condition,
# the randomness of spikifying the condition is shared among both
# training and validation data splits.
if (i % nreplications)+1 > train_fraction * nreplications:
valid_inds.append(i)
else:
train_inds.append(i)
return train_inds, valid_inds
def split_list_by_inds(data, inds1, inds2):
"""Take the data, a list, and split it up based on the indices in inds1 and
inds2.
Args:
data: the list of data to split
inds1, the first list of indices
inds2, the second list of indices
Returns: a 2-tuple of two lists.
"""
if data is None or len(data) == 0:
return [], []
else:
dout1 = [data[i] for i in inds1]
dout2 = [data[i] for i in inds2]
return dout1, dout2
def nparray_and_transpose(data_a_b_c):
"""Convert the list of items in data to a numpy array, and transpose it
Args:
data: data_asbsc: a nested, nested list of length a, with sublist length
b, with sublist length c.
Returns:
a numpy 3-tensor with dimensions a x c x b
"""
data_axbxc = np.array([datum_b_c for datum_b_c in data_a_b_c])
data_axcxb = np.transpose(data_axbxc, axes=[0,2,1])
return data_axcxb
def add_alignment_projections(datasets, npcs, ntime=None, nsamples=None):
"""Create a matrix that aligns the datasets a bit, under
the assumption that each dataset is observing the same underlying dynamical
system.
Args:
datasets: The dictionary of dataset structures.
npcs: The number of pcs for each, basically like lfads factors.
nsamples (optional): Number of samples to take for each dataset.
ntime (optional): Number of time steps to take in each sample.
Returns:
The dataset structures, with the field alignment_matrix_cxf added.
This is # channels x npcs dimension
"""
nchannels_all = 0
channel_idxs = {}
conditions_all = {}
nconditions_all = 0
for name, dataset in datasets.items():
cidxs = np.where(dataset['P_sxn'])[1] # non-zero entries in columns
channel_idxs[name] = [cidxs[0], cidxs[-1]+1]
nchannels_all += cidxs[-1]+1 - cidxs[0]
conditions_all[name] = np.unique(dataset['condition_labels_train'])
all_conditions_list = \
np.unique(np.ndarray.flatten(np.array(conditions_all.values())))
nconditions_all = all_conditions_list.shape[0]
if ntime is None:
ntime = dataset['train_data'].shape[1]
if nsamples is None:
nsamples = dataset['train_data'].shape[0]
# In the data workup in the paper, Chethan did intra condition
# averaging, so let's do that here.
avg_data_all = {}
for name, conditions in conditions_all.items():
dataset = datasets[name]
avg_data_all[name] = {}
for cname in conditions:
td_idxs = np.argwhere(np.array(dataset['condition_labels_train'])==cname)
data = np.squeeze(dataset['train_data'][td_idxs,:,:], axis=1)
avg_data = np.mean(data, axis=0)
avg_data_all[name][cname] = avg_data
# Visualize this in the morning.
all_data_nxtc = np.zeros([nchannels_all, ntime * nconditions_all])
for name, dataset in datasets.items():
cidx_s = channel_idxs[name][0]
cidx_f = channel_idxs[name][1]
for cname in conditions_all[name]:
cidxs = np.argwhere(all_conditions_list == cname)
if cidxs.shape[0] > 0:
cidx = cidxs[0][0]
all_tidxs = np.arange(0, ntime+1) + cidx*ntime
all_data_nxtc[cidx_s:cidx_f, all_tidxs[0]:all_tidxs[-1]] = \
avg_data_all[name][cname].T
# A bit of filtering. We don't care about spectral properties, or
# filtering artifacts, simply correlate time steps a bit.
filt_len = 6
bc_filt = np.ones([filt_len])/float(filt_len)
for c in range(nchannels_all):
all_data_nxtc[c,:] = scipy.signal.filtfilt(bc_filt, [1.0], all_data_nxtc[c,:])
# Compute the PCs.
all_data_mean_nx1 = np.mean(all_data_nxtc, axis=1, keepdims=True)
all_data_zm_nxtc = all_data_nxtc - all_data_mean_nx1
corr_mat_nxn = np.dot(all_data_zm_nxtc, all_data_zm_nxtc.T)
evals_n, evecs_nxn = np.linalg.eigh(corr_mat_nxn)
sidxs = np.flipud(np.argsort(evals_n)) # sort such that 0th is highest
evals_n = evals_n[sidxs]
evecs_nxn = evecs_nxn[:,sidxs]
# Project all the channels data onto the low-D PCA basis, where
# low-d is the npcs parameter.
all_data_pca_pxtc = np.dot(evecs_nxn[:, 0:npcs].T, all_data_zm_nxtc)
# Now for each dataset, we regress the channel data onto the top
# pcs, and this will be our alignment matrix for that dataset.
# |B - A*W|^2
for name, dataset in datasets.items():
cidx_s = channel_idxs[name][0]
cidx_f = channel_idxs[name][1]
all_data_zm_chxtc = all_data_zm_nxtc[cidx_s:cidx_f,:] # ch for channel
W_chxp, _, _, _ = \
np.linalg.lstsq(all_data_zm_chxtc.T, all_data_pca_pxtc.T)
dataset['alignment_matrix_cxf'] = W_chxp
alignment_bias_cx1 = all_data_mean_nx1[cidx_s:cidx_f]
dataset['alignment_bias_c'] = np.squeeze(alignment_bias_cx1, axis=1)
do_debug_plot = False
if do_debug_plot:
pc_vecs = evecs_nxn[:,0:npcs]
ntoplot = 400
plt.figure()
plt.plot(np.log10(evals_n), '-x')
plt.figure()
plt.subplot(311)
plt.imshow(all_data_pca_pxtc)
plt.colorbar()
plt.subplot(312)
plt.imshow(np.dot(W_chxp.T, all_data_zm_chxtc))
plt.colorbar()
plt.subplot(313)
plt.imshow(np.dot(all_data_zm_chxtc.T, W_chxp).T - all_data_pca_pxtc)
plt.colorbar()
import pdb
pdb.set_trace()
return datasets
|