Spaces:
Sleeping
Sleeping
File size: 9,043 Bytes
0b8359d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for embedding utils."""
import unittest
import numpy as np
import tensorflow as tf
from feelvos.utils import embedding_utils
if embedding_utils.USE_CORRELATION_COST:
# pylint: disable=g-import-not-at-top
from correlation_cost.python.ops import correlation_cost_op
class EmbeddingUtilsTest(tf.test.TestCase):
def test_pairwise_distances(self):
x = np.arange(100, dtype=np.float32).reshape(20, 5)
y = np.arange(100, 200, dtype=np.float32).reshape(20, 5)
g = tf.Graph()
with g.as_default():
with self.test_session(graph=g) as sess:
x = tf.constant(x)
y = tf.constant(y)
d1 = embedding_utils.pairwise_distances(x, y)
d2 = embedding_utils.pairwise_distances2(x, y)
d1_val, d2_val = sess.run([d1, d2])
self.assertAllClose(d1_val, d2_val)
@unittest.skipIf(not embedding_utils.USE_CORRELATION_COST,
'depends on correlation_cost')
def test_correlation_cost_one_dimensional(self):
a = np.array([[[[1.0], [2.0]], [[3.0], [4.0]]]])
b = np.array([[[[2.0], [1.0]], [[4.0], [3.0]]]])
g = tf.Graph()
with g.as_default():
with self.test_session(graph=g) as sess:
c = correlation_cost_op.correlation_cost(
a, b, kernel_size=1, max_displacement=1, stride_1=1, stride_2=1,
pad=1)
c = tf.squeeze(c, axis=0)
c_val = sess.run(c)
self.assertAllEqual(c_val.shape, (2, 2, 9))
for y in range(2):
for x in range(2):
for dy in range(-1, 2):
for dx in range(-1, 2):
a_slice = a[0, y, x, 0]
if y + dy < 0 or y + dy > 1 or x + dx < 0 or x + dx > 1:
b_slice = 0
else:
b_slice = b[0, y + dy, x + dx, 0]
expected = a_slice * b_slice
dy0 = dy + 1
dx0 = dx + 1
self.assertAlmostEqual(c_val[y, x, 3 * dy0 + dx0], expected)
@unittest.skipIf(not embedding_utils.USE_CORRELATION_COST,
'depends on correlation_cost')
def test_correlation_cost_two_dimensional(self):
a = np.array([[[[1.0, -5.0], [7.0, 2.0]], [[1.0, 3.0], [3.0, 4.0]]]])
b = np.array([[[[2.0, 1.0], [0.0, -9.0]], [[4.0, 3.0], [3.0, 1.0]]]])
g = tf.Graph()
with g.as_default():
with self.test_session(graph=g) as sess:
c = correlation_cost_op.correlation_cost(
a, b, kernel_size=1, max_displacement=1, stride_1=1, stride_2=1,
pad=1)
c = tf.squeeze(c, axis=0)
c_val = sess.run(c)
self.assertAllEqual(c_val.shape, (2, 2, 9))
for y in range(2):
for x in range(2):
for dy in range(-1, 2):
for dx in range(-1, 2):
a_slice = a[0, y, x, :]
if y + dy < 0 or y + dy > 1 or x + dx < 0 or x + dx > 1:
b_slice = 0
else:
b_slice = b[0, y + dy, x + dx, :]
expected = (a_slice * b_slice).mean()
dy0 = dy + 1
dx0 = dx + 1
self.assertAlmostEqual(c_val[y, x, 3 * dy0 + dx0], expected)
@unittest.skipIf(not embedding_utils.USE_CORRELATION_COST,
'depends on correlation_cost')
def test_local_pairwise_distances_one_dimensional(self):
a = np.array([[[1.0], [2.0]], [[3.0], [4.0]]])
b = np.array([[[2.0], [1.0]], [[4.0], [3.0]]])
g = tf.Graph()
with g.as_default():
with self.test_session(graph=g) as sess:
a_tf = tf.constant(a, dtype=tf.float32)
b_tf = tf.constant(b, dtype=tf.float32)
d = embedding_utils.local_pairwise_distances(a_tf, b_tf,
max_distance=1)
d_val = sess.run(d)
for y in range(2):
for x in range(2):
for dy in range(-1, 2):
for dx in range(-1, 2):
a_slice = a[y, x, 0]
if y + dy < 0 or y + dy > 1 or x + dx < 0 or x + dx > 1:
expected = np.float('inf')
else:
b_slice = b[y + dy, x + dx, 0]
expected = (a_slice - b_slice) ** 2
dy0 = dy + 1
dx0 = dx + 1
self.assertAlmostEqual(d_val[y, x, 3 * dy0 + dx0], expected)
@unittest.skipIf(not embedding_utils.USE_CORRELATION_COST,
'depends on correlation_cost')
def test_local_pairwise_distances_shape(self):
a = np.zeros((4, 5, 2))
b = np.zeros((4, 5, 2))
g = tf.Graph()
with g.as_default():
with self.test_session(graph=g) as sess:
a_tf = tf.constant(a, dtype=tf.float32)
b_tf = tf.constant(b, dtype=tf.float32)
d = embedding_utils.local_pairwise_distances(a_tf, b_tf, max_distance=4)
d_val = sess.run(d)
self.assertAllEqual(d_val.shape, (4, 5, 81))
@unittest.skipIf(not embedding_utils.USE_CORRELATION_COST,
'depends on correlation_cost')
def test_local_pairwise_distances_two_dimensional(self):
a = np.array([[[1.0, -5.0], [7.0, 2.0]], [[1.0, 3.0], [3.0, 4.0]]])
b = np.array([[[2.0, 1.0], [0.0, -9.0]], [[4.0, 3.0], [3.0, 1.0]]])
g = tf.Graph()
with g.as_default():
with self.test_session(graph=g) as sess:
a_tf = tf.constant(a, dtype=tf.float32)
b_tf = tf.constant(b, dtype=tf.float32)
d = embedding_utils.local_pairwise_distances(a_tf, b_tf,
max_distance=1)
d_val = sess.run(d)
for y in range(2):
for x in range(2):
for dy in range(-1, 2):
for dx in range(-1, 2):
a_slice = a[y, x, :]
if y + dy < 0 or y + dy > 1 or x + dx < 0 or x + dx > 1:
expected = np.float('inf')
else:
b_slice = b[y + dy, x + dx, :]
expected = ((a_slice - b_slice) ** 2).sum()
dy0 = dy + 1
dx0 = dx + 1
self.assertAlmostEqual(d_val[y, x, 3 * dy0 + dx0], expected)
@unittest.skipIf(not embedding_utils.USE_CORRELATION_COST,
'depends on correlation_cost')
def test_local_previous_frame_nearest_neighbor_features_per_object(self):
prev_frame_embedding = np.array([[[1.0, -5.0], [7.0, 2.0]],
[[1.0, 3.0], [3.0, 4.0]]]) / 10
query_embedding = np.array([[[2.0, 1.0], [0.0, -9.0]],
[[4.0, 3.0], [3.0, 1.0]]]) / 10
prev_frame_labels = np.array([[[0], [1]], [[1], [0]]])
gt_ids = np.array([0, 1])
g = tf.Graph()
with g.as_default():
with self.test_session(graph=g) as sess:
prev_frame_embedding_tf = tf.constant(prev_frame_embedding,
dtype=tf.float32)
query_embedding_tf = tf.constant(query_embedding, dtype=tf.float32)
embu = embedding_utils
dists = (
embu.local_previous_frame_nearest_neighbor_features_per_object(
prev_frame_embedding_tf, query_embedding_tf,
prev_frame_labels, gt_ids, max_distance=1))
dists = tf.squeeze(dists, axis=4)
dists = tf.squeeze(dists, axis=0)
dists_val = sess.run(dists)
for obj_id in gt_ids:
for y in range(2):
for x in range(2):
curr_min = 1.0
for dy in range(-1, 2):
for dx in range(-1, 2):
# Attention: here we shift the prev frame embedding,
# not the query.
if y + dy < 0 or y + dy > 1 or x + dx < 0 or x + dx > 1:
continue
if prev_frame_labels[y + dy, x + dx, 0] != obj_id:
continue
prev_frame_slice = prev_frame_embedding[y + dy, x + dx, :]
query_frame_slice = query_embedding[y, x, :]
v_unnorm = ((prev_frame_slice - query_frame_slice) ** 2).sum()
v = ((1.0 / (1.0 + np.exp(-v_unnorm))) - 0.5) * 2
curr_min = min(curr_min, v)
expected = curr_min
self.assertAlmostEqual(dists_val[y, x, obj_id], expected,
places=5)
if __name__ == '__main__':
tf.test.main()
|