File size: 17,397 Bytes
0b8359d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
# Lint as: python3
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Contains definitions for EfficientNet model.

[1] Mingxing Tan, Quoc V. Le
  EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks.
  ICML'19, https://arxiv.org/abs/1905.11946
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math
import os
from typing import Any, Dict, Optional, Text, Tuple

from absl import logging
from dataclasses import dataclass
import tensorflow as tf

from official.modeling import tf_utils
from official.modeling.hyperparams import base_config
from official.vision.image_classification import preprocessing
from official.vision.image_classification.efficientnet import common_modules


@dataclass
class BlockConfig(base_config.Config):
  """Config for a single MB Conv Block."""
  input_filters: int = 0
  output_filters: int = 0
  kernel_size: int = 3
  num_repeat: int = 1
  expand_ratio: int = 1
  strides: Tuple[int, int] = (1, 1)
  se_ratio: Optional[float] = None
  id_skip: bool = True
  fused_conv: bool = False
  conv_type: str = 'depthwise'


@dataclass
class ModelConfig(base_config.Config):
  """Default Config for Efficientnet-B0."""
  width_coefficient: float = 1.0
  depth_coefficient: float = 1.0
  resolution: int = 224
  dropout_rate: float = 0.2
  blocks: Tuple[BlockConfig, ...] = (
      # (input_filters, output_filters, kernel_size, num_repeat,
      #  expand_ratio, strides, se_ratio)
      # pylint: disable=bad-whitespace
      BlockConfig.from_args(32,  16,  3, 1, 1, (1, 1), 0.25),
      BlockConfig.from_args(16,  24,  3, 2, 6, (2, 2), 0.25),
      BlockConfig.from_args(24,  40,  5, 2, 6, (2, 2), 0.25),
      BlockConfig.from_args(40,  80,  3, 3, 6, (2, 2), 0.25),
      BlockConfig.from_args(80,  112, 5, 3, 6, (1, 1), 0.25),
      BlockConfig.from_args(112, 192, 5, 4, 6, (2, 2), 0.25),
      BlockConfig.from_args(192, 320, 3, 1, 6, (1, 1), 0.25),
      # pylint: enable=bad-whitespace
  )
  stem_base_filters: int = 32
  top_base_filters: int = 1280
  activation: str = 'simple_swish'
  batch_norm: str = 'default'
  bn_momentum: float = 0.99
  bn_epsilon: float = 1e-3
  # While the original implementation used a weight decay of 1e-5,
  # tf.nn.l2_loss divides it by 2, so we halve this to compensate in Keras
  weight_decay: float = 5e-6
  drop_connect_rate: float = 0.2
  depth_divisor: int = 8
  min_depth: Optional[int] = None
  use_se: bool = True
  input_channels: int = 3
  num_classes: int = 1000
  model_name: str = 'efficientnet'
  rescale_input: bool = True
  data_format: str = 'channels_last'
  dtype: str = 'float32'


MODEL_CONFIGS = {
    # (width, depth, resolution, dropout)
    'efficientnet-b0': ModelConfig.from_args(1.0, 1.0, 224, 0.2),
    'efficientnet-b1': ModelConfig.from_args(1.0, 1.1, 240, 0.2),
    'efficientnet-b2': ModelConfig.from_args(1.1, 1.2, 260, 0.3),
    'efficientnet-b3': ModelConfig.from_args(1.2, 1.4, 300, 0.3),
    'efficientnet-b4': ModelConfig.from_args(1.4, 1.8, 380, 0.4),
    'efficientnet-b5': ModelConfig.from_args(1.6, 2.2, 456, 0.4),
    'efficientnet-b6': ModelConfig.from_args(1.8, 2.6, 528, 0.5),
    'efficientnet-b7': ModelConfig.from_args(2.0, 3.1, 600, 0.5),
    'efficientnet-b8': ModelConfig.from_args(2.2, 3.6, 672, 0.5),
    'efficientnet-l2': ModelConfig.from_args(4.3, 5.3, 800, 0.5),
}

CONV_KERNEL_INITIALIZER = {
    'class_name': 'VarianceScaling',
    'config': {
        'scale': 2.0,
        'mode': 'fan_out',
        # Note: this is a truncated normal distribution
        'distribution': 'normal'
    }
}

DENSE_KERNEL_INITIALIZER = {
    'class_name': 'VarianceScaling',
    'config': {
        'scale': 1 / 3.0,
        'mode': 'fan_out',
        'distribution': 'uniform'
    }
}


def round_filters(filters: int,
                  config: ModelConfig) -> int:
  """Round number of filters based on width coefficient."""
  width_coefficient = config.width_coefficient
  min_depth = config.min_depth
  divisor = config.depth_divisor
  orig_filters = filters

  if not width_coefficient:
    return filters

  filters *= width_coefficient
  min_depth = min_depth or divisor
  new_filters = max(min_depth, int(filters + divisor / 2) // divisor * divisor)
  # Make sure that round down does not go down by more than 10%.
  if new_filters < 0.9 * filters:
    new_filters += divisor
  logging.info('round_filter input=%s output=%s', orig_filters, new_filters)
  return int(new_filters)


def round_repeats(repeats: int, depth_coefficient: float) -> int:
  """Round number of repeats based on depth coefficient."""
  return int(math.ceil(depth_coefficient * repeats))


def conv2d_block(inputs: tf.Tensor,
                 conv_filters: Optional[int],
                 config: ModelConfig,
                 kernel_size: Any = (1, 1),
                 strides: Any = (1, 1),
                 use_batch_norm: bool = True,
                 use_bias: bool = False,
                 activation: Any = None,
                 depthwise: bool = False,
                 name: Text = None):
  """A conv2d followed by batch norm and an activation."""
  batch_norm = common_modules.get_batch_norm(config.batch_norm)
  bn_momentum = config.bn_momentum
  bn_epsilon = config.bn_epsilon
  data_format = tf.keras.backend.image_data_format()
  weight_decay = config.weight_decay

  name = name or ''

  # Collect args based on what kind of conv2d block is desired
  init_kwargs = {
      'kernel_size': kernel_size,
      'strides': strides,
      'use_bias': use_bias,
      'padding': 'same',
      'name': name + '_conv2d',
      'kernel_regularizer': tf.keras.regularizers.l2(weight_decay),
      'bias_regularizer': tf.keras.regularizers.l2(weight_decay),
  }

  if depthwise:
    conv2d = tf.keras.layers.DepthwiseConv2D
    init_kwargs.update({'depthwise_initializer': CONV_KERNEL_INITIALIZER})
  else:
    conv2d = tf.keras.layers.Conv2D
    init_kwargs.update({'filters': conv_filters,
                        'kernel_initializer': CONV_KERNEL_INITIALIZER})

  x = conv2d(**init_kwargs)(inputs)

  if use_batch_norm:
    bn_axis = 1 if data_format == 'channels_first' else -1
    x = batch_norm(axis=bn_axis,
                   momentum=bn_momentum,
                   epsilon=bn_epsilon,
                   name=name + '_bn')(x)

  if activation is not None:
    x = tf.keras.layers.Activation(activation,
                                   name=name + '_activation')(x)
  return x


def mb_conv_block(inputs: tf.Tensor,
                  block: BlockConfig,
                  config: ModelConfig,
                  prefix: Text = None):
  """Mobile Inverted Residual Bottleneck.

  Args:
    inputs: the Keras input to the block
    block: BlockConfig, arguments to create a Block
    config: ModelConfig, a set of model parameters
    prefix: prefix for naming all layers

  Returns:
    the output of the block
  """
  use_se = config.use_se
  activation = tf_utils.get_activation(config.activation)
  drop_connect_rate = config.drop_connect_rate
  data_format = tf.keras.backend.image_data_format()
  use_depthwise = block.conv_type != 'no_depthwise'
  prefix = prefix or ''

  filters = block.input_filters * block.expand_ratio

  x = inputs

  if block.fused_conv:
    # If we use fused mbconv, skip expansion and use regular conv.
    x = conv2d_block(x,
                     filters,
                     config,
                     kernel_size=block.kernel_size,
                     strides=block.strides,
                     activation=activation,
                     name=prefix + 'fused')
  else:
    if block.expand_ratio != 1:
      # Expansion phase
      kernel_size = (1, 1) if use_depthwise else (3, 3)
      x = conv2d_block(x,
                       filters,
                       config,
                       kernel_size=kernel_size,
                       activation=activation,
                       name=prefix + 'expand')

    # Depthwise Convolution
    if use_depthwise:
      x = conv2d_block(x,
                       conv_filters=None,
                       config=config,
                       kernel_size=block.kernel_size,
                       strides=block.strides,
                       activation=activation,
                       depthwise=True,
                       name=prefix + 'depthwise')

  # Squeeze and Excitation phase
  if use_se:
    assert block.se_ratio is not None
    assert 0 < block.se_ratio <= 1
    num_reduced_filters = max(1, int(
        block.input_filters * block.se_ratio
    ))

    if data_format == 'channels_first':
      se_shape = (filters, 1, 1)
    else:
      se_shape = (1, 1, filters)

    se = tf.keras.layers.GlobalAveragePooling2D(name=prefix + 'se_squeeze')(x)
    se = tf.keras.layers.Reshape(se_shape, name=prefix + 'se_reshape')(se)

    se = conv2d_block(se,
                      num_reduced_filters,
                      config,
                      use_bias=True,
                      use_batch_norm=False,
                      activation=activation,
                      name=prefix + 'se_reduce')
    se = conv2d_block(se,
                      filters,
                      config,
                      use_bias=True,
                      use_batch_norm=False,
                      activation='sigmoid',
                      name=prefix + 'se_expand')
    x = tf.keras.layers.multiply([x, se], name=prefix + 'se_excite')

  # Output phase
  x = conv2d_block(x,
                   block.output_filters,
                   config,
                   activation=None,
                   name=prefix + 'project')

  # Add identity so that quantization-aware training can insert quantization
  # ops correctly.
  x = tf.keras.layers.Activation(tf_utils.get_activation('identity'),
                                 name=prefix + 'id')(x)

  if (block.id_skip
      and all(s == 1 for s in block.strides)
      and block.input_filters == block.output_filters):
    if drop_connect_rate and drop_connect_rate > 0:
      # Apply dropconnect
      # The only difference between dropout and dropconnect in TF is scaling by
      # drop_connect_rate during training. See:
      # https://github.com/keras-team/keras/pull/9898#issuecomment-380577612
      x = tf.keras.layers.Dropout(drop_connect_rate,
                                  noise_shape=(None, 1, 1, 1),
                                  name=prefix + 'drop')(x)

    x = tf.keras.layers.add([x, inputs], name=prefix + 'add')

  return x


def efficientnet(image_input: tf.keras.layers.Input,
                 config: ModelConfig):
  """Creates an EfficientNet graph given the model parameters.

  This function is wrapped by the `EfficientNet` class to make a tf.keras.Model.

  Args:
    image_input: the input batch of images
    config: the model config

  Returns:
    the output of efficientnet
  """
  depth_coefficient = config.depth_coefficient
  blocks = config.blocks
  stem_base_filters = config.stem_base_filters
  top_base_filters = config.top_base_filters
  activation = tf_utils.get_activation(config.activation)
  dropout_rate = config.dropout_rate
  drop_connect_rate = config.drop_connect_rate
  num_classes = config.num_classes
  input_channels = config.input_channels
  rescale_input = config.rescale_input
  data_format = tf.keras.backend.image_data_format()
  dtype = config.dtype
  weight_decay = config.weight_decay

  x = image_input
  if data_format == 'channels_first':
    # Happens on GPU/TPU if available.
    x = tf.keras.layers.Permute((3, 1, 2))(x)
  if rescale_input:
    x = preprocessing.normalize_images(x,
                                       num_channels=input_channels,
                                       dtype=dtype,
                                       data_format=data_format)

  # Build stem
  x = conv2d_block(x,
                   round_filters(stem_base_filters, config),
                   config,
                   kernel_size=[3, 3],
                   strides=[2, 2],
                   activation=activation,
                   name='stem')

  # Build blocks
  num_blocks_total = sum(
      round_repeats(block.num_repeat, depth_coefficient) for block in blocks)
  block_num = 0

  for stack_idx, block in enumerate(blocks):
    assert block.num_repeat > 0
    # Update block input and output filters based on depth multiplier
    block = block.replace(
        input_filters=round_filters(block.input_filters, config),
        output_filters=round_filters(block.output_filters, config),
        num_repeat=round_repeats(block.num_repeat, depth_coefficient))

    # The first block needs to take care of stride and filter size increase
    drop_rate = drop_connect_rate * float(block_num) / num_blocks_total
    config = config.replace(drop_connect_rate=drop_rate)
    block_prefix = 'stack_{}/block_0/'.format(stack_idx)
    x = mb_conv_block(x, block, config, block_prefix)
    block_num += 1
    if block.num_repeat > 1:
      block = block.replace(
          input_filters=block.output_filters,
          strides=[1, 1]
      )

      for block_idx in range(block.num_repeat - 1):
        drop_rate = drop_connect_rate * float(block_num) / num_blocks_total
        config = config.replace(drop_connect_rate=drop_rate)
        block_prefix = 'stack_{}/block_{}/'.format(stack_idx, block_idx + 1)
        x = mb_conv_block(x, block, config, prefix=block_prefix)
        block_num += 1

  # Build top
  x = conv2d_block(x,
                   round_filters(top_base_filters, config),
                   config,
                   activation=activation,
                   name='top')

  # Build classifier
  x = tf.keras.layers.GlobalAveragePooling2D(name='top_pool')(x)
  if dropout_rate and dropout_rate > 0:
    x = tf.keras.layers.Dropout(dropout_rate, name='top_dropout')(x)
  x = tf.keras.layers.Dense(
      num_classes,
      kernel_initializer=DENSE_KERNEL_INITIALIZER,
      kernel_regularizer=tf.keras.regularizers.l2(weight_decay),
      bias_regularizer=tf.keras.regularizers.l2(weight_decay),
      name='logits')(x)
  x = tf.keras.layers.Activation('softmax', name='probs')(x)

  return x


@tf.keras.utils.register_keras_serializable(package='Vision')
class EfficientNet(tf.keras.Model):
  """Wrapper class for an EfficientNet Keras model.

  Contains helper methods to build, manage, and save metadata about the model.
  """

  def __init__(self,
               config: ModelConfig = None,
               overrides: Dict[Text, Any] = None):
    """Create an EfficientNet model.

    Args:
      config: (optional) the main model parameters to create the model
      overrides: (optional) a dict containing keys that can override
                 config
    """
    overrides = overrides or {}
    config = config or ModelConfig()

    self.config = config.replace(**overrides)

    input_channels = self.config.input_channels
    model_name = self.config.model_name
    input_shape = (None, None, input_channels)  # Should handle any size image
    image_input = tf.keras.layers.Input(shape=input_shape)

    output = efficientnet(image_input, self.config)

    # Cast to float32 in case we have a different model dtype
    output = tf.cast(output, tf.float32)

    logging.info('Building model %s with params %s',
                 model_name,
                 self.config)

    super(EfficientNet, self).__init__(
        inputs=image_input, outputs=output, name=model_name)

  @classmethod
  def from_name(cls,
                model_name: Text,
                model_weights_path: Text = None,
                weights_format: Text = 'saved_model',
                overrides: Dict[Text, Any] = None):
    """Construct an EfficientNet model from a predefined model name.

    E.g., `EfficientNet.from_name('efficientnet-b0')`.

    Args:
      model_name: the predefined model name
      model_weights_path: the path to the weights (h5 file or saved model dir)
      weights_format: the model weights format. One of 'saved_model', 'h5',
       or 'checkpoint'.
      overrides: (optional) a dict containing keys that can override config

    Returns:
      A constructed EfficientNet instance.
    """
    model_configs = dict(MODEL_CONFIGS)
    overrides = dict(overrides) if overrides else {}

    # One can define their own custom models if necessary
    model_configs.update(overrides.pop('model_config', {}))

    if model_name not in model_configs:
      raise ValueError('Unknown model name {}'.format(model_name))

    config = model_configs[model_name]

    model = cls(config=config, overrides=overrides)

    if model_weights_path:
      common_modules.load_weights(model,
                                  model_weights_path,
                                  weights_format=weights_format)

    return model