File size: 25,494 Bytes
0b8359d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
# Copyright 2017 Google, Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Helper utilities for training and testing optimizers."""

from collections import defaultdict
import random
import sys
import time

import numpy as np
from six.moves import xrange
import tensorflow as tf

from learned_optimizer.optimizer import trainable_optimizer
from learned_optimizer.optimizer import utils
from learned_optimizer.problems import datasets
from learned_optimizer.problems import problem_generator

tf.app.flags.DEFINE_integer("ps_tasks", 0,
                            """Number of tasks in the ps job.
                            If 0 no ps job is used.""")
tf.app.flags.DEFINE_float("nan_l2_reg", 1e-2,
                          """Strength of l2-reg when NaNs are encountered.""")
tf.app.flags.DEFINE_float("l2_reg", 0.,
                          """Lambda value for parameter regularization.""")
# Default is 0.9
tf.app.flags.DEFINE_float("rms_decay", 0.9,
                          """Decay value for the RMSProp metaoptimizer.""")
# Default is 1e-10
tf.app.flags.DEFINE_float("rms_epsilon", 1e-20,
                          """Epsilon value for the RMSProp metaoptimizer.""")
tf.app.flags.DEFINE_boolean("set_profiling", False,
                            """Enable memory usage and computation time """
                            """tracing for tensorflow nodes (available in """
                            """TensorBoard).""")
tf.app.flags.DEFINE_boolean("reset_rnn_params", True,
                            """Reset the parameters of the optimizer
                               from one meta-iteration to the next.""")

FLAGS = tf.app.flags.FLAGS
OPTIMIZER_SCOPE = "LOL"
OPT_SUM_COLLECTION = "LOL_summaries"


def sigmoid_weights(n, slope=0.1, offset=5):
  """Generates a sigmoid, scaled to sum to 1.

  This function is used to generate weights that serve to mask out
  the early objective values of an optimization problem such that
  initial variation in the objective is phased out (hence the sigmoid
  starts at zero and ramps up to the maximum value, and the total
  weight is normalized to sum to one)

  Args:
    n: the number of samples
    slope: slope of the sigmoid (Default: 0.1)
    offset: threshold of the sigmoid (Default: 5)

  Returns:
    No
  """
  x = np.arange(n)
  y = 1. / (1. + np.exp(-slope * (x-offset)))
  y_normalized = y / np.sum(y)
  return y_normalized


def sample_numiter(scale, min_steps=50):
  """Samples a number of iterations from an exponential distribution.

  Args:
    scale: parameter for the exponential distribution
    min_steps: minimum number of steps to run (additive)

  Returns:
    num_steps: An integer equal to a rounded sample from the exponential
               distribution + the value of min_steps.
  """
  return int(np.round(np.random.exponential(scale=scale)) + min_steps)


def train_optimizer(logdir,
                    optimizer_spec,
                    problems_and_data,
                    num_problems,
                    num_meta_iterations,
                    num_unroll_func,
                    num_partial_unroll_itrs_func,
                    learning_rate=1e-4,
                    gradient_clip=5.,
                    is_chief=False,
                    select_random_problems=True,
                    callbacks=None,
                    obj_train_max_multiplier=-1,
                    out=sys.stdout):
  """Trains the meta-parameters of this optimizer.

  Args:
    logdir: a directory filepath for storing model checkpoints (must exist)
    optimizer_spec: specification for an Optimizer (see utils.Spec)
    problems_and_data: a list of tuples containing three elements: a problem
      specification (see utils.Spec), a dataset (see datasets.Dataset), and
      a batch_size (int) for generating a problem and corresponding dataset. If
      the problem doesn't have data, set dataset to None.
    num_problems: the number of problems to sample during meta-training
    num_meta_iterations: the number of iterations (steps) to run the
      meta-optimizer for on each subproblem.
    num_unroll_func: called once per meta iteration and returns the number of
      unrolls to do for that meta iteration.
    num_partial_unroll_itrs_func: called once per unroll and returns the number
      of iterations to do for that unroll.
    learning_rate: learning rate of the RMSProp meta-optimizer (Default: 1e-4)
    gradient_clip: value to clip gradients at (Default: 5.0)
    is_chief: whether this is the chief task (Default: False)
    select_random_problems: whether to select training problems randomly
        (Default: True)
    callbacks: a list of callback functions that is run after every random
        problem draw
    obj_train_max_multiplier: the maximum increase in the objective value over
        a single training run. Ignored if < 0.
    out: where to write output to, e.g. a file handle (Default: sys.stdout)

  Raises:
    ValueError: If one of the subproblems has a negative objective value.
  """

  if select_random_problems:
    # iterate over random draws of problem / dataset pairs
    sampler = (random.choice(problems_and_data) for _ in range(num_problems))
  else:
    # iterate over a random shuffle of problems, looping if necessary
    num_repeats = (num_problems / len(problems_and_data)) + 1
    random.shuffle(problems_and_data)
    sampler = (problems_and_data * num_repeats)[:num_problems]

  for problem_itr, (problem_spec, dataset, batch_size) in enumerate(sampler):

    # timer used to time how long it takes to initialize a problem
    problem_start_time = time.time()

    # if dataset is None, use the EMPTY_DATASET
    if dataset is None:
      dataset = datasets.EMPTY_DATASET
      batch_size = dataset.size

    # build a new graph for this problem
    graph = tf.Graph()
    real_device_setter = tf.train.replica_device_setter(FLAGS.ps_tasks)

    def custom_device_setter(op):
      # Places the local variables onto the workers.
      if trainable_optimizer.is_local_state_variable(op):
        return "/job:worker"
      else:
        return real_device_setter(op)

    if real_device_setter:
      device_setter = custom_device_setter
    else:
      device_setter = None

    with graph.as_default(), graph.device(device_setter):

      # initialize a problem
      problem = problem_spec.build()

      # build the optimizer
      opt = optimizer_spec.build()

      # get the meta-objective for training the optimizer
      train_output = opt.train(problem, dataset)

      state_keys = opt.state_keys
      for key, val in zip(state_keys, train_output.output_state[0]):
        finite_val = utils.make_finite(val, replacement=tf.zeros_like(val))
        tf.summary.histogram("State/{}".format(key), finite_val,
                             collections=[OPT_SUM_COLLECTION])

      tf.summary.scalar("MetaObjective", train_output.metaobj,
                        collections=[OPT_SUM_COLLECTION])

      # Per-problem meta-objective
      tf.summary.scalar(problem_spec.callable.__name__ + "_MetaObjective",
                        train_output.metaobj,
                        collections=[OPT_SUM_COLLECTION])

      # create the meta-train_op
      global_step = tf.Variable(0, name="global_step", trainable=False)
      meta_parameters = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,
                                          scope=OPTIMIZER_SCOPE)
      # parameter regularization
      reg_l2 = FLAGS.l2_reg * sum([tf.reduce_sum(param ** 2)
                                   for param in meta_parameters])

      # compute the meta-gradients
      meta_opt = tf.train.RMSPropOptimizer(learning_rate, decay=FLAGS.rms_decay,
                                           use_locking=True,
                                           epsilon=FLAGS.rms_epsilon)
      grads_and_vars = meta_opt.compute_gradients(train_output.metaobj + reg_l2,
                                                  meta_parameters)

      # clip the gradients
      clipped_grads_and_vars = []
      for grad, var in grads_and_vars:
        clipped_grad = tf.clip_by_value(
            utils.make_finite(grad, replacement=tf.zeros_like(var)),
            -gradient_clip, gradient_clip)
        clipped_grads_and_vars.append((clipped_grad, var))

      # histogram summary of grads and vars
      for grad, var in grads_and_vars:
        tf.summary.histogram(
            var.name + "_rawgrad",
            utils.make_finite(
                grad, replacement=tf.zeros_like(grad)),
            collections=[OPT_SUM_COLLECTION])
      for grad, var in clipped_grads_and_vars:
        tf.summary.histogram(var.name + "_var", var,
                             collections=[OPT_SUM_COLLECTION])
        tf.summary.histogram(var.name + "_grad", grad,
                             collections=[OPT_SUM_COLLECTION])

      # builds the train and summary operations
      train_op = meta_opt.apply_gradients(clipped_grads_and_vars,
                                          global_step=global_step)

      # only grab summaries defined for LOL, not inside the problem
      summary_op = tf.summary.merge_all(key=OPT_SUM_COLLECTION)

      # make sure the state gets propagated after the gradients and summaries
      # were computed.
      with tf.control_dependencies([train_op, summary_op]):
        propagate_loop_state_ops = []
        for dest, src in zip(
            train_output.init_loop_vars, train_output.output_loop_vars):
          propagate_loop_state_ops.append(dest.assign(src))
        propagate_loop_state_op = tf.group(*propagate_loop_state_ops)

      # create the supervisor
      sv = tf.train.Supervisor(
          graph=graph,
          is_chief=is_chief,
          logdir=logdir,
          summary_op=None,
          save_model_secs=0,      # we save checkpoints manually
          global_step=global_step,
      )

      with sv.managed_session() as sess:

        init_time = time.time() - problem_start_time
        out.write("--------- Problem #{} ---------\n".format(problem_itr))
        out.write("{callable.__name__}{args}{kwargs}\n".format(
            **problem_spec.__dict__))
        out.write("Took {} seconds to initialize.\n".format(init_time))
        out.flush()

        # For profiling summaries
        if FLAGS.set_profiling:
          summary_writer = tf.summary.FileWriter(logdir, graph=sess.graph)

        # used to store information during training
        metadata = defaultdict(list)

        for k in range(num_meta_iterations):

          if sv.should_stop():
            break

          problem.init_fn(sess)

          # set run options (for profiling)
          full_trace_opt = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
          run_options = full_trace_opt if FLAGS.set_profiling else None
          run_metadata = tf.RunMetadata() if FLAGS.set_profiling else None

          num_unrolls = num_unroll_func()
          partial_unroll_iters = [
              num_partial_unroll_itrs_func() for _ in xrange(num_unrolls)
          ]
          total_num_iter = sum(partial_unroll_iters)

          objective_weights = [np.ones(num) / float(num)
                               for num in partial_unroll_iters]
          db = dataset.batch_indices(total_num_iter, batch_size)
          dataset_batches = []
          last_index = 0
          for num in partial_unroll_iters:
            dataset_batches.append(db[last_index:last_index + num])
            last_index += num

          train_start_time = time.time()

          unroll_itr = 0
          additional_log_info = ""

          for unroll_itr in range(num_unrolls):
            first_unroll = unroll_itr == 0
            if FLAGS.reset_rnn_params:
              reset_state = first_unroll and k == 0
            else:
              reset_state = first_unroll

            feed = {
                train_output.obj_weights: objective_weights[unroll_itr],
                train_output.batches: dataset_batches[unroll_itr],
                train_output.first_unroll: first_unroll,
                train_output.reset_state: reset_state,
            }

            # run the train and summary ops
            # when a "save_diagnostics" flag is turned on
            fetches_list = [
                train_output.metaobj,
                train_output.problem_objectives,
                train_output.initial_obj,
                summary_op,
                clipped_grads_and_vars,
                train_op
            ]
            if unroll_itr + 1 < num_unrolls:
              fetches_list += [propagate_loop_state_op]

            fetched = sess.run(fetches_list, feed_dict=feed,
                               options=run_options, run_metadata=run_metadata)
            meta_obj = fetched[0]
            sub_obj = fetched[1]
            init_obj = fetched[2]
            summ = fetched[3]
            meta_grads_and_params = fetched[4]

            # assert that the subproblem objectives are non-negative
            # (this is so that we can rescale the objective by the initial value
            # and not worry about rescaling by a negative value)
            if np.any(sub_obj < 0):
              raise ValueError(
                  "Training problem objectives must be nonnegative.")
            # If the objective has increased more than we want, exit this
            # training run and start over on another meta iteration.
            if obj_train_max_multiplier > 0 and (
                sub_obj[-1] > (init_obj +
                               abs(init_obj) * (obj_train_max_multiplier - 1))):
              msg = " Broke early at {} out of {} unrolls. ".format(
                  unroll_itr + 1, num_unrolls)
              additional_log_info += msg
              break

            # only the chief task is allowed to write the summary
            if is_chief:
              sv.summary_computed(sess, summ)

            metadata["subproblem_objs"].append(sub_obj)
            # store training metadata to pass to the callback
            metadata["meta_objs"].append(meta_obj)
            metadata["meta_grads_and_params"].append(meta_grads_and_params)

          optimization_time = time.time() - train_start_time

          if FLAGS.set_profiling:
            summary_name = "%02d_iter%04d_%02d" % (FLAGS.task, problem_itr, k)
            summary_writer.add_run_metadata(run_metadata, summary_name)

          metadata["global_step"].append(sess.run(global_step))
          metadata["runtimes"].append(optimization_time)

          # write a diagnostic message to the output
          args = (k, meta_obj, optimization_time,
                  sum(partial_unroll_iters[:unroll_itr+1]))
          out.write("  [{:02}] {}, {} seconds, {} iters ".format(*args))
          out.write("(unrolled {} steps)".format(
              ", ".join([str(s) for s in partial_unroll_iters[:unroll_itr+1]])))
          out.write("{}\n".format(additional_log_info))
          out.flush()

        if FLAGS.set_profiling:
          summary_writer.close()

        # force a checkpoint save before we load a new problem
        # only the chief task has the save_path and can write the checkpoint
        if is_chief:
          sv.saver.save(sess, sv.save_path, global_step=global_step)

    # run the callbacks on the chief
    if is_chief and callbacks is not None:
      for callback in callbacks:
        if hasattr(callback, "__call__"):
          problem_name = problem_spec.callable.__name__
          callback(problem_name, problem_itr, logdir, metadata)


def test_optimizer(optimizer,
                   problem,
                   num_iter,
                   dataset=datasets.EMPTY_DATASET,
                   batch_size=None,
                   seed=None,
                   graph=None,
                   logdir=None,
                   record_every=None):
  """Tests an optimization algorithm on a given problem.

  Args:
    optimizer: Either a tf.train.Optimizer instance, or an Optimizer instance
               inheriting from trainable_optimizer.py
    problem: A Problem instance that defines an optimization problem to solve
    num_iter: The number of iterations of the optimizer to run
    dataset: The dataset to train the problem against
    batch_size: The number of samples per batch. If None (default), the
      batch size is set to the full batch (dataset.size)
    seed: A random seed used for drawing the initial parameters, or a list of
      numpy arrays used to explicitly initialize the parameters.
    graph: The tensorflow graph to execute (if None, uses the default graph)
    logdir: A directory containing model checkpoints. If given, then the
            parameters of the optimizer are loaded from the latest checkpoint
            in this folder.
    record_every: if an integer, stores the parameters, objective, and gradient
                  every recored_every iterations. If None, nothing is stored

  Returns:
    objective_values: A list of the objective values during optimization
    parameters: The parameters obtained after training
    records: A dictionary containing lists of the parameters and gradients
             during optimization saved every record_every iterations (empty if
             record_every is set to None)
  """

  if dataset is None:
    dataset = datasets.EMPTY_DATASET
    batch_size = dataset.size
  else:
    # default batch size is the entire dataset
    batch_size = dataset.size if batch_size is None else batch_size

  graph = tf.get_default_graph() if graph is None else graph
  with graph.as_default():

    # define the parameters of the optimization problem
    if isinstance(seed, (list, tuple)):
      # seed is a list of arrays
      params = problem_generator.init_fixed_variables(seed)
    else:
      # seed is an int or None
      params = problem.init_variables(seed)

    data_placeholder = tf.placeholder(tf.float32)
    labels_placeholder = tf.placeholder(tf.int32)

    # get the problem objective and gradient(s)
    obj = problem.objective(params, data_placeholder, labels_placeholder)
    gradients = problem.gradients(obj, params)

    vars_to_preinitialize = params

  with tf.Session(graph=graph) as sess:
    # initialize the parameter scope variables; necessary for apply_gradients
    sess.run(tf.variables_initializer(vars_to_preinitialize))
    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(sess=sess, coord=coord)

    # create the train operation and training variables
    try:
      train_op, real_params = optimizer.apply_gradients(zip(gradients, params))
      obj = problem.objective(real_params, data_placeholder, labels_placeholder)
    except TypeError:
      # If all goes well, this exception should only be thrown when we are using
      # a non-hrnn optimizer.
      train_op = optimizer.apply_gradients(zip(gradients, params))

    vars_to_restore = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,
                                        scope=OPTIMIZER_SCOPE)
    vars_to_initialize = list(
        set(tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)) -
        set(vars_to_restore) - set(vars_to_preinitialize))
    # load or initialize optimizer variables
    if logdir is not None:
      restorer = tf.Saver(var_list=vars_to_restore)
      ckpt = tf.train.latest_checkpoint(logdir)
      restorer.restore(sess, ckpt)
    else:
      sess.run(tf.variables_initializer(vars_to_restore))
    # initialize all the other variables
    sess.run(tf.variables_initializer(vars_to_initialize))

    problem.init_fn(sess)

    # generate the minibatch indices
    batch_inds = dataset.batch_indices(num_iter, batch_size)

    # run the train operation for n iterations and save the objectives
    records = defaultdict(list)
    objective_values = []
    for itr, batch in enumerate(batch_inds):

      # data to feed in
      feed = {data_placeholder: dataset.data[batch],
              labels_placeholder: dataset.labels[batch]}
      full_feed = {data_placeholder: dataset.data,
                   labels_placeholder: dataset.labels}

      # record stuff
      if record_every is not None and (itr % record_every) == 0:
        def grad_value(g):
          if isinstance(g, tf.IndexedSlices):
            return g.values
          else:
            return g

        records_fetch = {}
        for p in params:
          for key in optimizer.get_slot_names():
            v = optimizer.get_slot(p, key)
            records_fetch[p.name + "_" + key] = v
        gav_fetch = [(grad_value(g), v) for g, v in zip(gradients, params)]

        _, gav_eval, records_eval = sess.run(
            (obj, gav_fetch, records_fetch), feed_dict=feed)
        full_obj_eval = sess.run([obj], feed_dict=full_feed)

        records["objective"].append(full_obj_eval)
        records["grad_norm"].append([np.linalg.norm(g.ravel())
                                     for g, _ in gav_eval])
        records["param_norm"].append([np.linalg.norm(v.ravel())
                                      for _, v in gav_eval])
        records["grad"].append([g for g, _ in gav_eval])
        records["param"].append([v for _, v in gav_eval])
        records["iter"].append(itr)

        for k, v in records_eval.iteritems():
          records[k].append(v)

      # run the optimization train operation
      objective_values.append(sess.run([train_op, obj], feed_dict=feed)[1])

    # final parameters
    parameters = [sess.run(p) for p in params]
    coord.request_stop()
    coord.join(threads)

  return objective_values, parameters, records


def run_wall_clock_test(optimizer,
                        problem,
                        num_steps,
                        dataset=datasets.EMPTY_DATASET,
                        seed=None,
                        logdir=None,
                        batch_size=None):
  """Runs optimization with the given parameters and return average iter time.

  Args:
    optimizer: The tf.train.Optimizer instance
    problem: The problem to optimize (a problem_generator.Problem)
    num_steps: The number of steps to run optimization for
    dataset: The dataset to train the problem against
    seed: The seed used for drawing the initial parameters, or a list of
      numpy arrays used to explicitly initialize the parameters
    logdir: A directory containing model checkpoints. If given, then the
            parameters of the optimizer are loaded from the latest checkpoint
            in this folder.
    batch_size: The number of samples per batch.

  Returns:
    The average time in seconds for a single optimization iteration.
  """
  if dataset is None:
    dataset = datasets.EMPTY_DATASET
    batch_size = dataset.size
  else:
    # default batch size is the entire dataset
    batch_size = dataset.size if batch_size is None else batch_size

  # define the parameters of the optimization problem
  if isinstance(seed, (list, tuple)):
    # seed is a list of arrays
    params = problem_generator.init_fixed_variables(seed)
  else:
    # seed is an int or None
    params = problem.init_variables(seed)

  data_placeholder = tf.placeholder(tf.float32)
  labels_placeholder = tf.placeholder(tf.int32)

  obj = problem.objective(params, data_placeholder, labels_placeholder)
  gradients = problem.gradients(obj, params)
  vars_to_preinitialize = params

  with tf.Session(graph=tf.get_default_graph()) as sess:
    # initialize the parameter scope variables; necessary for apply_gradients
    sess.run(tf.variables_initializer(vars_to_preinitialize))
    train_op = optimizer.apply_gradients(zip(gradients, params))
    if isinstance(train_op, tuple) or isinstance(train_op, list):
      # LOL apply_gradients returns a tuple. Regular optimizers do not.
      train_op = train_op[0]
    vars_to_restore = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,
                                        scope=OPTIMIZER_SCOPE)
    vars_to_initialize = list(
        set(tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)) -
        set(vars_to_restore) - set(vars_to_preinitialize))
    # load or initialize optimizer variables
    if logdir is not None:
      restorer = tf.Saver(var_list=vars_to_restore)
      ckpt = tf.train.latest_checkpoint(logdir)
      restorer.restore(sess, ckpt)
    else:
      sess.run(tf.variables_initializer(vars_to_restore))
    # initialize all the other variables
    sess.run(tf.variables_initializer(vars_to_initialize))

    problem.init_fn(sess)

    # generate the minibatch indices
    batch_inds = dataset.batch_indices(num_steps, batch_size)

    avg_iter_time = []
    for batch in batch_inds:
      # data to feed in
      feed = {data_placeholder: dataset.data[batch],
              labels_placeholder: dataset.labels[batch]}

      # run the optimization train operation
      start = time.time()
      sess.run([train_op], feed_dict=feed)
      avg_iter_time.append(time.time() - start)

  return np.median(np.array(avg_iter_time))