Spaces:
Running
Running
File size: 63,918 Bytes
0b8359d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 |
# Copyright 2016 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
r"""Navidation Environment. Includes the following classes along with some
helper functions.
Building: Loads buildings, computes traversibility, exposes functionality for
rendering images.
GridWorld: Base class which implements functionality for moving an agent on a
grid world.
NavigationEnv: Base class which generates navigation problems on a grid world.
VisualNavigationEnv: Builds upon NavigationEnv and Building to provide
interface that is used externally to train the agent.
MeshMapper: Class used for distilling the model, testing the mapper.
BuildingMultiplexer: Wrapper class that instantiates a VisualNavigationEnv for
each building and multiplexes between them as needed.
"""
import numpy as np
import os
import re
import matplotlib.pyplot as plt
import graph_tool as gt
import graph_tool.topology
from tensorflow.python.platform import gfile
import logging
import src.file_utils as fu
import src.utils as utils
import src.graph_utils as gu
import src.map_utils as mu
import src.depth_utils as du
import render.swiftshader_renderer as sru
from render.swiftshader_renderer import SwiftshaderRenderer
import cv2
label_nodes_with_class = gu.label_nodes_with_class
label_nodes_with_class_geodesic = gu.label_nodes_with_class_geodesic
get_distance_node_list = gu.get_distance_node_list
convert_to_graph_tool = gu.convert_to_graph_tool
generate_graph = gu.generate_graph
get_hardness_distribution = gu.get_hardness_distribution
rng_next_goal_rejection_sampling = gu.rng_next_goal_rejection_sampling
rng_next_goal = gu.rng_next_goal
rng_room_to_room = gu.rng_room_to_room
rng_target_dist_field = gu.rng_target_dist_field
compute_traversibility = mu.compute_traversibility
make_map = mu.make_map
resize_maps = mu.resize_maps
pick_largest_cc = mu.pick_largest_cc
get_graph_origin_loc = mu.get_graph_origin_loc
generate_egocentric_maps = mu.generate_egocentric_maps
generate_goal_images = mu.generate_goal_images
get_map_to_predict = mu.get_map_to_predict
bin_points = du.bin_points
make_geocentric = du.make_geocentric
get_point_cloud_from_z = du.get_point_cloud_from_z
get_camera_matrix = du.get_camera_matrix
def _get_semantic_maps(folder_name, building_name, map, flip):
# Load file from the cache.
file_name = '{:s}_{:d}_{:d}_{:d}_{:d}_{:d}_{:d}.pkl'
file_name = file_name.format(building_name, map.size[0], map.size[1],
map.origin[0], map.origin[1], map.resolution,
flip)
file_name = os.path.join(folder_name, file_name)
logging.info('Loading semantic maps from %s.', file_name)
if fu.exists(file_name):
a = utils.load_variables(file_name)
maps = a['maps'] #HxWx#C
cats = a['cats']
else:
logging.error('file_name: %s not found.', file_name)
maps = None
cats = None
return maps, cats
def _select_classes(all_maps, all_cats, cats_to_use):
inds = []
for c in cats_to_use:
ind = all_cats.index(c)
inds.append(ind)
out_maps = all_maps[:,:,inds]
return out_maps
def _get_room_dimensions(file_name, resolution, origin, flip=False):
if fu.exists(file_name):
a = utils.load_variables(file_name)['room_dimension']
names = a.keys()
dims = np.concatenate(a.values(), axis=0).reshape((-1,6))
ind = np.argsort(names)
dims = dims[ind,:]
names = [names[x] for x in ind]
if flip:
dims_new = dims*1
dims_new[:,1] = -dims[:,4]
dims_new[:,4] = -dims[:,1]
dims = dims_new*1
dims = dims*100.
dims[:,0] = dims[:,0] - origin[0]
dims[:,1] = dims[:,1] - origin[1]
dims[:,3] = dims[:,3] - origin[0]
dims[:,4] = dims[:,4] - origin[1]
dims = dims / resolution
out = {'names': names, 'dims': dims}
else:
out = None
return out
def _filter_rooms(room_dims, room_regex):
pattern = re.compile(room_regex)
ind = []
for i, name in enumerate(room_dims['names']):
if pattern.match(name):
ind.append(i)
new_room_dims = {}
new_room_dims['names'] = [room_dims['names'][i] for i in ind]
new_room_dims['dims'] = room_dims['dims'][ind,:]*1
return new_room_dims
def _label_nodes_with_room_id(xyt, room_dims):
# Label the room with the ID into things.
node_room_id = -1*np.ones((xyt.shape[0], 1))
dims = room_dims['dims']
for x, name in enumerate(room_dims['names']):
all_ = np.concatenate((xyt[:,[0]] >= dims[x,0],
xyt[:,[0]] <= dims[x,3],
xyt[:,[1]] >= dims[x,1],
xyt[:,[1]] <= dims[x,4]), axis=1)
node_room_id[np.all(all_, axis=1), 0] = x
return node_room_id
def get_path_ids(start_node_id, end_node_id, pred_map):
id = start_node_id
path = [id]
while id != end_node_id:
id = pred_map[id]
path.append(id)
return path
def image_pre(images, modalities):
# Assumes images are ...xHxWxC.
# We always assume images are RGB followed by Depth.
if 'depth' in modalities:
d = images[...,-1][...,np.newaxis]*1.
d[d < 0.01] = np.NaN; isnan = np.isnan(d);
d = 100./d; d[isnan] = 0.;
images = np.concatenate((images[...,:-1], d, isnan), axis=images.ndim-1)
if 'rgb' in modalities:
images[...,:3] = images[...,:3]*1. - 128
return images
def _get_relative_goal_loc(goal_loc, loc, theta):
r = np.sqrt(np.sum(np.square(goal_loc - loc), axis=1))
t = np.arctan2(goal_loc[:,1] - loc[:,1], goal_loc[:,0] - loc[:,0])
t = t-theta[:,0] + np.pi/2
return np.expand_dims(r,axis=1), np.expand_dims(t, axis=1)
def _gen_perturbs(rng, batch_size, num_steps, lr_flip, delta_angle, delta_xy,
structured):
perturbs = []
for i in range(batch_size):
# Doing things one by one for each episode in this batch. This way this
# remains replicatable even when we change the batch size.
p = np.zeros((num_steps+1, 4))
if lr_flip:
# Flip the whole trajectory.
p[:,3] = rng.rand(1)-0.5
if delta_angle > 0:
if structured:
p[:,2] = (rng.rand(1)-0.5)* delta_angle
else:
p[:,2] = (rng.rand(p.shape[0])-0.5)* delta_angle
if delta_xy > 0:
if structured:
p[:,:2] = (rng.rand(1, 2)-0.5)*delta_xy
else:
p[:,:2] = (rng.rand(p.shape[0], 2)-0.5)*delta_xy
perturbs.append(p)
return perturbs
def get_multiplexer_class(args, task_number):
assert(args.task_params.base_class == 'Building')
logging.info('Returning BuildingMultiplexer')
R = BuildingMultiplexer(args, task_number)
return R
class GridWorld():
def __init__(self):
"""Class members that will be assigned by any class that actually uses this
class."""
self.restrict_to_largest_cc = None
self.robot = None
self.env = None
self.category_list = None
self.traversible = None
def get_loc_axis(self, node, delta_theta, perturb=None):
"""Based on the node orientation returns X, and Y axis. Used to sample the
map in egocentric coordinate frame.
"""
if type(node) == tuple:
node = np.array([node])
if perturb is None:
perturb = np.zeros((node.shape[0], 4))
xyt = self.to_actual_xyt_vec(node)
x = xyt[:,[0]] + perturb[:,[0]]
y = xyt[:,[1]] + perturb[:,[1]]
t = xyt[:,[2]] + perturb[:,[2]]
theta = t*delta_theta
loc = np.concatenate((x,y), axis=1)
x_axis = np.concatenate((np.cos(theta), np.sin(theta)), axis=1)
y_axis = np.concatenate((np.cos(theta+np.pi/2.), np.sin(theta+np.pi/2.)),
axis=1)
# Flip the sampled map where need be.
y_axis[np.where(perturb[:,3] > 0)[0], :] *= -1.
return loc, x_axis, y_axis, theta
def to_actual_xyt(self, pqr):
"""Converts from node to location on the map."""
(p, q, r) = pqr
if self.task.n_ori == 6:
out = (p - q * 0.5 + self.task.origin_loc[0],
q * np.sqrt(3.) / 2. + self.task.origin_loc[1], r)
elif self.task.n_ori == 4:
out = (p + self.task.origin_loc[0],
q + self.task.origin_loc[1], r)
return out
def to_actual_xyt_vec(self, pqr):
"""Converts from node array to location array on the map."""
p = pqr[:,0][:, np.newaxis]
q = pqr[:,1][:, np.newaxis]
r = pqr[:,2][:, np.newaxis]
if self.task.n_ori == 6:
out = np.concatenate((p - q * 0.5 + self.task.origin_loc[0],
q * np.sqrt(3.) / 2. + self.task.origin_loc[1],
r), axis=1)
elif self.task.n_ori == 4:
out = np.concatenate((p + self.task.origin_loc[0],
q + self.task.origin_loc[1],
r), axis=1)
return out
def raw_valid_fn_vec(self, xyt):
"""Returns if the given set of nodes is valid or not."""
height = self.traversible.shape[0]
width = self.traversible.shape[1]
x = np.round(xyt[:,[0]]).astype(np.int32)
y = np.round(xyt[:,[1]]).astype(np.int32)
is_inside = np.all(np.concatenate((x >= 0, y >= 0,
x < width, y < height), axis=1), axis=1)
x = np.minimum(np.maximum(x, 0), width-1)
y = np.minimum(np.maximum(y, 0), height-1)
ind = np.ravel_multi_index((y,x), self.traversible.shape)
is_traversible = self.traversible.ravel()[ind]
is_valid = np.all(np.concatenate((is_inside[:,np.newaxis], is_traversible),
axis=1), axis=1)
return is_valid
def valid_fn_vec(self, pqr):
"""Returns if the given set of nodes is valid or not."""
xyt = self.to_actual_xyt_vec(np.array(pqr))
height = self.traversible.shape[0]
width = self.traversible.shape[1]
x = np.round(xyt[:,[0]]).astype(np.int32)
y = np.round(xyt[:,[1]]).astype(np.int32)
is_inside = np.all(np.concatenate((x >= 0, y >= 0,
x < width, y < height), axis=1), axis=1)
x = np.minimum(np.maximum(x, 0), width-1)
y = np.minimum(np.maximum(y, 0), height-1)
ind = np.ravel_multi_index((y,x), self.traversible.shape)
is_traversible = self.traversible.ravel()[ind]
is_valid = np.all(np.concatenate((is_inside[:,np.newaxis], is_traversible),
axis=1), axis=1)
return is_valid
def get_feasible_actions(self, node_ids):
"""Returns the feasible set of actions from the current node."""
a = np.zeros((len(node_ids), self.task_params.num_actions), dtype=np.int32)
gtG = self.task.gtG
next_node = []
for i, c in enumerate(node_ids):
neigh = gtG.vertex(c).out_neighbours()
neigh_edge = gtG.vertex(c).out_edges()
nn = {}
for n, e in zip(neigh, neigh_edge):
_ = gtG.ep['action'][e]
a[i,_] = 1
nn[_] = int(n)
next_node.append(nn)
return a, next_node
def take_action(self, current_node_ids, action):
"""Returns the new node after taking the action action. Stays at the current
node if the action is invalid."""
actions, next_node_ids = self.get_feasible_actions(current_node_ids)
new_node_ids = []
for i, (c,a) in enumerate(zip(current_node_ids, action)):
if actions[i,a] == 1:
new_node_ids.append(next_node_ids[i][a])
else:
new_node_ids.append(c)
return new_node_ids
def set_r_obj(self, r_obj):
"""Sets the SwiftshaderRenderer object used for rendering."""
self.r_obj = r_obj
class Building(GridWorld):
def __init__(self, building_name, robot, env,
category_list=None, small=False, flip=False, logdir=None,
building_loader=None):
self.restrict_to_largest_cc = True
self.robot = robot
self.env = env
self.logdir = logdir
# Load the building meta data.
building = building_loader.load_building(building_name)
if small:
building['mesh_names'] = building['mesh_names'][:5]
# New code.
shapess = building_loader.load_building_meshes(building)
if flip:
for shapes in shapess:
shapes.flip_shape()
vs = []
for shapes in shapess:
vs.append(shapes.get_vertices()[0])
vs = np.concatenate(vs, axis=0)
map = make_map(env.padding, env.resolution, vertex=vs, sc=100.)
map = compute_traversibility(
map, robot.base, robot.height, robot.radius, env.valid_min,
env.valid_max, env.num_point_threshold, shapess=shapess, sc=100.,
n_samples_per_face=env.n_samples_per_face)
room_dims = _get_room_dimensions(building['room_dimension_file'],
env.resolution, map.origin, flip=flip)
class_maps, class_map_names = _get_semantic_maps(
building['class_map_folder'], building_name, map, flip)
self.class_maps = class_maps
self.class_map_names = class_map_names
self.building = building
self.shapess = shapess
self.map = map
self.traversible = map.traversible*1
self.building_name = building_name
self.room_dims = room_dims
self.flipped = flip
self.renderer_entitiy_ids = []
if self.restrict_to_largest_cc:
self.traversible = pick_largest_cc(self.traversible)
def load_building_into_scene(self):
# Loads the scene.
self.renderer_entitiy_ids += self.r_obj.load_shapes(self.shapess)
# Free up memory, we dont need the mesh or the materials anymore.
self.shapess = None
def add_entity_at_nodes(self, nodes, height, shape):
xyt = self.to_actual_xyt_vec(nodes)
nxy = xyt[:,:2]*1.
nxy = nxy * self.map.resolution
nxy = nxy + self.map.origin
Ts = np.concatenate((nxy, nxy[:,:1]), axis=1)
Ts[:,2] = height; Ts = Ts / 100.;
# Merge all the shapes into a single shape and add that shape.
shape.replicate_shape(Ts)
entity_ids = self.r_obj.load_shapes([shape])
self.renderer_entitiy_ids += entity_ids
return entity_ids
def add_shapes(self, shapes):
scene = self.r_obj.viz.scene()
for shape in shapes:
scene.AddShape(shape)
def add_materials(self, materials):
scene = self.r_obj.viz.scene()
for material in materials:
scene.AddOrUpdateMaterial(material)
def set_building_visibility(self, visibility):
self.r_obj.set_entity_visible(self.renderer_entitiy_ids, visibility)
def render_nodes(self, nodes, perturb=None, aux_delta_theta=0.):
self.set_building_visibility(True)
if perturb is None:
perturb = np.zeros((len(nodes), 4))
imgs = []
r = 2
elevation_z = r * np.tan(np.deg2rad(self.robot.camera_elevation_degree))
for i in range(len(nodes)):
xyt = self.to_actual_xyt(nodes[i])
lookat_theta = 3.0 * np.pi / 2.0 - (xyt[2]+perturb[i,2]+aux_delta_theta) * (self.task.delta_theta)
nxy = np.array([xyt[0]+perturb[i,0], xyt[1]+perturb[i,1]]).reshape(1, -1)
nxy = nxy * self.map.resolution
nxy = nxy + self.map.origin
camera_xyz = np.zeros((1, 3))
camera_xyz[...] = [nxy[0, 0], nxy[0, 1], self.robot.sensor_height]
camera_xyz = camera_xyz / 100.
lookat_xyz = np.array([-r * np.sin(lookat_theta),
-r * np.cos(lookat_theta), elevation_z])
lookat_xyz = lookat_xyz + camera_xyz[0, :]
self.r_obj.position_camera(camera_xyz[0, :].tolist(),
lookat_xyz.tolist(), [0.0, 0.0, 1.0])
img = self.r_obj.render(take_screenshot=True, output_type=0)
img = [x for x in img if x is not None]
img = np.concatenate(img, axis=2).astype(np.float32)
if perturb[i,3]>0:
img = img[:,::-1,:]
imgs.append(img)
self.set_building_visibility(False)
return imgs
class MeshMapper(Building):
def __init__(self, robot, env, task_params, building_name, category_list,
flip, logdir=None, building_loader=None):
Building.__init__(self, building_name, robot, env, category_list,
small=task_params.toy_problem, flip=flip, logdir=logdir,
building_loader=building_loader)
self.task_params = task_params
self.task = None
self._preprocess_for_task(self.task_params.building_seed)
def _preprocess_for_task(self, seed):
if self.task is None or self.task.seed != seed:
rng = np.random.RandomState(seed)
origin_loc = get_graph_origin_loc(rng, self.traversible)
self.task = utils.Foo(seed=seed, origin_loc=origin_loc,
n_ori=self.task_params.n_ori)
G = generate_graph(self.valid_fn_vec,
self.task_params.step_size, self.task.n_ori,
(0, 0, 0))
gtG, nodes, nodes_to_id = convert_to_graph_tool(G)
self.task.gtG = gtG
self.task.nodes = nodes
self.task.delta_theta = 2.0*np.pi/(self.task.n_ori*1.)
self.task.nodes_to_id = nodes_to_id
logging.info('Building %s, #V=%d, #E=%d', self.building_name,
self.task.nodes.shape[0], self.task.gtG.num_edges())
if self.logdir is not None:
write_traversible = cv2.applyColorMap(self.traversible.astype(np.uint8)*255, cv2.COLORMAP_JET)
img_path = os.path.join(self.logdir,
'{:s}_{:d}_graph.png'.format(self.building_name,
seed))
node_xyt = self.to_actual_xyt_vec(self.task.nodes)
plt.set_cmap('jet');
fig, ax = utils.subplot(plt, (1,1), (12,12))
ax.plot(node_xyt[:,0], node_xyt[:,1], 'm.')
ax.imshow(self.traversible, origin='lower');
ax.set_axis_off(); ax.axis('equal');
ax.set_title('{:s}, {:d}, {:d}'.format(self.building_name,
self.task.nodes.shape[0],
self.task.gtG.num_edges()))
if self.room_dims is not None:
for i, r in enumerate(self.room_dims['dims']*1):
min_ = r[:3]*1
max_ = r[3:]*1
xmin, ymin, zmin = min_
xmax, ymax, zmax = max_
ax.plot([xmin, xmax, xmax, xmin, xmin],
[ymin, ymin, ymax, ymax, ymin], 'g')
with fu.fopen(img_path, 'w') as f:
fig.savefig(f, bbox_inches='tight', transparent=True, pad_inches=0)
plt.close(fig)
def _gen_rng(self, rng):
# instances is a list of list of node_ids.
if self.task_params.move_type == 'circle':
_, _, _, _, paths = rng_target_dist_field(self.task_params.batch_size,
self.task.gtG, rng, 0, 1,
compute_path=True)
instances_ = paths
instances = []
for instance_ in instances_:
instance = instance_
for i in range(self.task_params.num_steps):
instance.append(self.take_action([instance[-1]], [1])[0])
instances.append(instance)
elif self.task_params.move_type == 'shortest_path':
_, _, _, _, paths = rng_target_dist_field(self.task_params.batch_size,
self.task.gtG, rng,
self.task_params.num_steps,
self.task_params.num_steps+1,
compute_path=True)
instances = paths
elif self.task_params.move_type == 'circle+forward':
_, _, _, _, paths = rng_target_dist_field(self.task_params.batch_size,
self.task.gtG, rng, 0, 1,
compute_path=True)
instances_ = paths
instances = []
for instance_ in instances_:
instance = instance_
for i in range(self.task_params.n_ori-1):
instance.append(self.take_action([instance[-1]], [1])[0])
while len(instance) <= self.task_params.num_steps:
while self.take_action([instance[-1]], [3])[0] == instance[-1] and len(instance) <= self.task_params.num_steps:
instance.append(self.take_action([instance[-1]], [2])[0])
if len(instance) <= self.task_params.num_steps:
instance.append(self.take_action([instance[-1]], [3])[0])
instances.append(instance)
# Do random perturbation if needed.
perturbs = _gen_perturbs(rng, self.task_params.batch_size,
self.task_params.num_steps,
self.task_params.data_augment.lr_flip,
self.task_params.data_augment.delta_angle,
self.task_params.data_augment.delta_xy,
self.task_params.data_augment.structured)
return instances, perturbs
def worker(self, instances, perturbs):
# Output the images and the free space.
# Make the instances be all the same length.
for i in range(len(instances)):
for j in range(self.task_params.num_steps - len(instances[i]) + 1):
instances[i].append(instances[i][-1])
if perturbs[i].shape[0] < self.task_params.num_steps+1:
p = np.zeros((self.task_params.num_steps+1, 4))
p[:perturbs[i].shape[0], :] = perturbs[i]
p[perturbs[i].shape[0]:, :] = perturbs[i][-1,:]
perturbs[i] = p
instances_ = []
for instance in instances:
instances_ = instances_ + instance
perturbs_ = np.concatenate(perturbs, axis=0)
instances_nodes = self.task.nodes[instances_,:]
instances_nodes = [tuple(x) for x in instances_nodes]
imgs_ = self.render_nodes(instances_nodes, perturbs_)
imgs = []; next = 0;
for instance in instances:
img_i = []
for _ in instance:
img_i.append(imgs_[next])
next = next+1
imgs.append(img_i)
imgs = np.array(imgs)
# Render out the maps in the egocentric view for all nodes and not just the
# last node.
all_nodes = []
for x in instances:
all_nodes = all_nodes + x
all_perturbs = np.concatenate(perturbs, axis=0)
loc, x_axis, y_axis, theta = self.get_loc_axis(
self.task.nodes[all_nodes, :]*1, delta_theta=self.task.delta_theta,
perturb=all_perturbs)
fss = None
valids = None
loc_on_map = None
theta_on_map = None
cum_fs = None
cum_valid = None
incremental_locs = None
incremental_thetas = None
if self.task_params.output_free_space:
fss, valids = get_map_to_predict(loc, x_axis, y_axis,
map=self.traversible*1.,
map_size=self.task_params.map_size)
fss = np.array(fss) > 0.5
fss = np.reshape(fss, [self.task_params.batch_size,
self.task_params.num_steps+1,
self.task_params.map_size,
self.task_params.map_size])
valids = np.reshape(np.array(valids), fss.shape)
if self.task_params.output_transform_to_global_map:
# Output the transform to the global map.
loc_on_map = np.reshape(loc*1, [self.task_params.batch_size,
self.task_params.num_steps+1, -1])
# Converting to location wrt to first location so that warping happens
# properly.
theta_on_map = np.reshape(theta*1, [self.task_params.batch_size,
self.task_params.num_steps+1, -1])
if self.task_params.output_incremental_transform:
# Output the transform to the global map.
incremental_locs_ = np.reshape(loc*1, [self.task_params.batch_size,
self.task_params.num_steps+1, -1])
incremental_locs_[:,1:,:] -= incremental_locs_[:,:-1,:]
t0 = -np.pi/2+np.reshape(theta*1, [self.task_params.batch_size,
self.task_params.num_steps+1, -1])
t = t0*1
incremental_locs = incremental_locs_*1
incremental_locs[:,:,0] = np.sum(incremental_locs_ * np.concatenate((np.cos(t), np.sin(t)), axis=-1), axis=-1)
incremental_locs[:,:,1] = np.sum(incremental_locs_ * np.concatenate((np.cos(t+np.pi/2), np.sin(t+np.pi/2)), axis=-1), axis=-1)
incremental_locs[:,0,:] = incremental_locs_[:,0,:]
# print incremental_locs_[0,:,:], incremental_locs[0,:,:], t0[0,:,:]
incremental_thetas = np.reshape(theta*1, [self.task_params.batch_size,
self.task_params.num_steps+1,
-1])
incremental_thetas[:,1:,:] += -incremental_thetas[:,:-1,:]
if self.task_params.output_canonical_map:
loc_ = loc[0::(self.task_params.num_steps+1), :]
x_axis = np.zeros_like(loc_); x_axis[:,1] = 1
y_axis = np.zeros_like(loc_); y_axis[:,0] = -1
cum_fs, cum_valid = get_map_to_predict(loc_, x_axis, y_axis,
map=self.traversible*1.,
map_size=self.task_params.map_size)
cum_fs = np.array(cum_fs) > 0.5
cum_fs = np.reshape(cum_fs, [self.task_params.batch_size, 1,
self.task_params.map_size,
self.task_params.map_size])
cum_valid = np.reshape(np.array(cum_valid), cum_fs.shape)
inputs = {'fs_maps': fss,
'valid_maps': valids,
'imgs': imgs,
'loc_on_map': loc_on_map,
'theta_on_map': theta_on_map,
'cum_fs_maps': cum_fs,
'cum_valid_maps': cum_valid,
'incremental_thetas': incremental_thetas,
'incremental_locs': incremental_locs}
return inputs
def pre(self, inputs):
inputs['imgs'] = image_pre(inputs['imgs'], self.task_params.modalities)
if inputs['loc_on_map'] is not None:
inputs['loc_on_map'] = inputs['loc_on_map'] - inputs['loc_on_map'][:,[0],:]
if inputs['theta_on_map'] is not None:
inputs['theta_on_map'] = np.pi/2. - inputs['theta_on_map']
return inputs
def _nav_env_reset_helper(type, rng, nodes, batch_size, gtG, max_dist,
num_steps, num_goals, data_augment, **kwargs):
"""Generates and returns a new episode."""
max_compute = max_dist + 4*num_steps
if type == 'general':
start_node_ids, end_node_ids, dist, pred_map, paths = \
rng_target_dist_field(batch_size, gtG, rng, max_dist, max_compute,
nodes=nodes, compute_path=False)
target_class = None
elif type == 'room_to_room_many':
goal_node_ids = []; dists = [];
node_room_ids = kwargs['node_room_ids']
# Sample the first one
start_node_ids_, end_node_ids_, dist_, _, _ = rng_room_to_room(
batch_size, gtG, rng, max_dist, max_compute,
node_room_ids=node_room_ids, nodes=nodes)
start_node_ids = start_node_ids_
goal_node_ids.append(end_node_ids_)
dists.append(dist_)
for n in range(num_goals-1):
start_node_ids_, end_node_ids_, dist_, _, _ = rng_next_goal(
goal_node_ids[n], batch_size, gtG, rng, max_dist,
max_compute, node_room_ids=node_room_ids, nodes=nodes,
dists_from_start_node=dists[n])
goal_node_ids.append(end_node_ids_)
dists.append(dist_)
target_class = None
elif type == 'rng_rejection_sampling_many':
num_goals = num_goals
goal_node_ids = []; dists = [];
n_ori = kwargs['n_ori']
step_size = kwargs['step_size']
min_dist = kwargs['min_dist']
sampling_distribution = kwargs['sampling_distribution']
target_distribution = kwargs['target_distribution']
rejection_sampling_M = kwargs['rejection_sampling_M']
distribution_bins = kwargs['distribution_bins']
for n in range(num_goals):
if n == 0: input_nodes = None
else: input_nodes = goal_node_ids[n-1]
start_node_ids_, end_node_ids_, dist_, _, _, _, _ = rng_next_goal_rejection_sampling(
input_nodes, batch_size, gtG, rng, max_dist, min_dist,
max_compute, sampling_distribution, target_distribution, nodes,
n_ori, step_size, distribution_bins, rejection_sampling_M)
if n == 0: start_node_ids = start_node_ids_
goal_node_ids.append(end_node_ids_)
dists.append(dist_)
target_class = None
elif type == 'room_to_room_back':
num_goals = num_goals
assert(num_goals == 2), 'num_goals must be 2.'
goal_node_ids = []; dists = [];
node_room_ids = kwargs['node_room_ids']
# Sample the first one.
start_node_ids_, end_node_ids_, dist_, _, _ = rng_room_to_room(
batch_size, gtG, rng, max_dist, max_compute,
node_room_ids=node_room_ids, nodes=nodes)
start_node_ids = start_node_ids_
goal_node_ids.append(end_node_ids_)
dists.append(dist_)
# Set second goal to be starting position, and compute distance to the start node.
goal_node_ids.append(start_node_ids)
dist = []
for i in range(batch_size):
dist_ = gt.topology.shortest_distance(
gt.GraphView(gtG, reversed=True),
source=gtG.vertex(start_node_ids[i]), target=None)
dist_ = np.array(dist_.get_array())
dist.append(dist_)
dists.append(dist)
target_class = None
elif type[:14] == 'to_nearest_obj':
# Generate an episode by sampling one of the target classes (with
# probability proportional to the number of nodes in the world).
# With the sampled class sample a node that is within some distance from
# the sampled class.
class_nodes = kwargs['class_nodes']
sampling = kwargs['sampling']
dist_to_class = kwargs['dist_to_class']
assert(num_goals == 1), 'Only supports a single goal.'
ind = rng.choice(class_nodes.shape[0], size=batch_size)
target_class = class_nodes[ind,1]
start_node_ids = []; dists = []; goal_node_ids = [];
for t in target_class:
if sampling == 'uniform':
max_dist = max_dist
cnts = np.bincount(dist_to_class[t], minlength=max_dist+1)*1.
cnts[max_dist+1:] = 0
p_each = 1./ cnts / (max_dist+1.)
p_each[cnts == 0] = 0
p = p_each[dist_to_class[t]]*1.; p = p/np.sum(p)
start_node_id = rng.choice(p.shape[0], size=1, p=p)[0]
else:
logging.fatal('Sampling not one of uniform.')
start_node_ids.append(start_node_id)
dists.append(dist_to_class[t])
# Dummy goal node, same as the start node, so that vis is better.
goal_node_ids.append(start_node_id)
dists = [dists]
goal_node_ids = [goal_node_ids]
return start_node_ids, goal_node_ids, dists, target_class
class NavigationEnv(GridWorld, Building):
"""Wrapper around GridWorld which sets up navigation tasks.
"""
def _debug_save_hardness(self, seed):
out_path = os.path.join(self.logdir, '{:s}_{:d}_hardness.png'.format(self.building_name, seed))
batch_size = 4000
rng = np.random.RandomState(0)
start_node_ids, end_node_ids, dists, pred_maps, paths, hardnesss, gt_dists = \
rng_next_goal_rejection_sampling(
None, batch_size, self.task.gtG, rng, self.task_params.max_dist,
self.task_params.min_dist, self.task_params.max_dist,
self.task.sampling_distribution, self.task.target_distribution,
self.task.nodes, self.task_params.n_ori, self.task_params.step_size,
self.task.distribution_bins, self.task.rejection_sampling_M)
bins = self.task.distribution_bins
n_bins = self.task.n_bins
with plt.style.context('ggplot'):
fig, axes = utils.subplot(plt, (1,2), (10,10))
ax = axes[0]
_ = ax.hist(hardnesss, bins=bins, weights=np.ones_like(hardnesss)/len(hardnesss))
ax.plot(bins[:-1]+0.5/n_bins, self.task.target_distribution, 'g')
ax.plot(bins[:-1]+0.5/n_bins, self.task.sampling_distribution, 'b')
ax.grid('on')
ax = axes[1]
_ = ax.hist(gt_dists, bins=np.arange(self.task_params.max_dist+1))
ax.grid('on')
ax.set_title('Mean: {:0.2f}, Median: {:0.2f}'.format(np.mean(gt_dists),
np.median(gt_dists)))
with fu.fopen(out_path, 'w') as f:
fig.savefig(f, bbox_inches='tight', transparent=True, pad_inches=0)
def _debug_save_map_nodes(self, seed):
"""Saves traversible space along with nodes generated on the graph. Takes
the seed as input."""
img_path = os.path.join(self.logdir, '{:s}_{:d}_graph.png'.format(self.building_name, seed))
node_xyt = self.to_actual_xyt_vec(self.task.nodes)
plt.set_cmap('jet');
fig, ax = utils.subplot(plt, (1,1), (12,12))
ax.plot(node_xyt[:,0], node_xyt[:,1], 'm.')
ax.set_axis_off(); ax.axis('equal');
if self.room_dims is not None:
for i, r in enumerate(self.room_dims['dims']*1):
min_ = r[:3]*1
max_ = r[3:]*1
xmin, ymin, zmin = min_
xmax, ymax, zmax = max_
ax.plot([xmin, xmax, xmax, xmin, xmin],
[ymin, ymin, ymax, ymax, ymin], 'g')
ax.imshow(self.traversible, origin='lower');
with fu.fopen(img_path, 'w') as f:
fig.savefig(f, bbox_inches='tight', transparent=True, pad_inches=0)
def _debug_semantic_maps(self, seed):
"""Saves traversible space along with nodes generated on the graph. Takes
the seed as input."""
for i, cls in enumerate(self.task_params.semantic_task.class_map_names):
img_path = os.path.join(self.logdir, '{:s}_flip{:d}_{:s}_graph.png'.format(self.building_name, seed, cls))
maps = self.traversible*1.
maps += 0.5*(self.task.class_maps_dilated[:,:,i])
write_traversible = (maps*1.+1.)/3.0
write_traversible = (write_traversible*255.).astype(np.uint8)[:,:,np.newaxis]
write_traversible = write_traversible + np.zeros((1,1,3), dtype=np.uint8)
fu.write_image(img_path, write_traversible[::-1,:,:])
def _preprocess_for_task(self, seed):
"""Sets up the task field for doing navigation on the grid world."""
if self.task is None or self.task.seed != seed:
rng = np.random.RandomState(seed)
origin_loc = get_graph_origin_loc(rng, self.traversible)
self.task = utils.Foo(seed=seed, origin_loc=origin_loc,
n_ori=self.task_params.n_ori)
G = generate_graph(self.valid_fn_vec, self.task_params.step_size,
self.task.n_ori, (0, 0, 0))
gtG, nodes, nodes_to_id = convert_to_graph_tool(G)
self.task.gtG = gtG
self.task.nodes = nodes
self.task.delta_theta = 2.0*np.pi/(self.task.n_ori*1.)
self.task.nodes_to_id = nodes_to_id
logging.info('Building %s, #V=%d, #E=%d', self.building_name,
self.task.nodes.shape[0], self.task.gtG.num_edges())
type = self.task_params.type
if type == 'general':
# Do nothing
_ = None
elif type == 'room_to_room_many' or type == 'room_to_room_back':
if type == 'room_to_room_back':
assert(self.task_params.num_goals == 2), 'num_goals must be 2.'
self.room_dims = _filter_rooms(self.room_dims, self.task_params.room_regex)
xyt = self.to_actual_xyt_vec(self.task.nodes)
self.task.node_room_ids = _label_nodes_with_room_id(xyt, self.room_dims)
self.task.reset_kwargs = {'node_room_ids': self.task.node_room_ids}
elif type == 'rng_rejection_sampling_many':
n_bins = 20
rejection_sampling_M = self.task_params.rejection_sampling_M
min_dist = self.task_params.min_dist
bins = np.arange(n_bins+1)/(n_bins*1.)
target_d = np.zeros(n_bins); target_d[...] = 1./n_bins;
sampling_d = get_hardness_distribution(
self.task.gtG, self.task_params.max_dist, self.task_params.min_dist,
np.random.RandomState(0), 4000, bins, self.task.nodes,
self.task_params.n_ori, self.task_params.step_size)
self.task.reset_kwargs = {'distribution_bins': bins,
'target_distribution': target_d,
'sampling_distribution': sampling_d,
'rejection_sampling_M': rejection_sampling_M,
'n_bins': n_bins,
'n_ori': self.task_params.n_ori,
'step_size': self.task_params.step_size,
'min_dist': self.task_params.min_dist}
self.task.n_bins = n_bins
self.task.distribution_bins = bins
self.task.target_distribution = target_d
self.task.sampling_distribution = sampling_d
self.task.rejection_sampling_M = rejection_sampling_M
if self.logdir is not None:
self._debug_save_hardness(seed)
elif type[:14] == 'to_nearest_obj':
self.room_dims = _filter_rooms(self.room_dims, self.task_params.room_regex)
xyt = self.to_actual_xyt_vec(self.task.nodes)
self.class_maps = _select_classes(self.class_maps,
self.class_map_names,
self.task_params.semantic_task.class_map_names)*1
self.class_map_names = self.task_params.semantic_task.class_map_names
nodes_xyt = self.to_actual_xyt_vec(np.array(self.task.nodes))
tt = utils.Timer(); tt.tic();
if self.task_params.type == 'to_nearest_obj_acc':
self.task.class_maps_dilated, self.task.node_class_label = label_nodes_with_class_geodesic(
nodes_xyt, self.class_maps,
self.task_params.semantic_task.pix_distance+8, self.map.traversible,
ff_cost=1., fo_cost=1., oo_cost=4., connectivity=8.)
dists = []
for i in range(len(self.class_map_names)):
class_nodes_ = np.where(self.task.node_class_label[:,i])[0]
dists.append(get_distance_node_list(gtG, source_nodes=class_nodes_, direction='to'))
self.task.dist_to_class = dists
a_, b_ = np.where(self.task.node_class_label)
self.task.class_nodes = np.concatenate((a_[:,np.newaxis], b_[:,np.newaxis]), axis=1)
if self.logdir is not None:
self._debug_semantic_maps(seed)
self.task.reset_kwargs = {'sampling': self.task_params.semantic_task.sampling,
'class_nodes': self.task.class_nodes,
'dist_to_class': self.task.dist_to_class}
if self.logdir is not None:
self._debug_save_map_nodes(seed)
def reset(self, rngs):
rng = rngs[0]; rng_perturb = rngs[1];
nodes = self.task.nodes
tp = self.task_params
start_node_ids, goal_node_ids, dists, target_class = \
_nav_env_reset_helper(tp.type, rng, self.task.nodes, tp.batch_size,
self.task.gtG, tp.max_dist, tp.num_steps,
tp.num_goals, tp.data_augment,
**(self.task.reset_kwargs))
start_nodes = [tuple(nodes[_,:]) for _ in start_node_ids]
goal_nodes = [[tuple(nodes[_,:]) for _ in __] for __ in goal_node_ids]
data_augment = tp.data_augment
perturbs = _gen_perturbs(rng_perturb, tp.batch_size,
(tp.num_steps+1)*tp.num_goals,
data_augment.lr_flip, data_augment.delta_angle,
data_augment.delta_xy, data_augment.structured)
perturbs = np.array(perturbs) # batch x steps x 4
end_perturbs = perturbs[:,-(tp.num_goals):,:]*1 # fixed perturb for the goal.
perturbs = perturbs[:,:-(tp.num_goals),:]*1
history = -np.ones((tp.batch_size, tp.num_steps*tp.num_goals), dtype=np.int32)
self.episode = utils.Foo(
start_nodes=start_nodes, start_node_ids=start_node_ids,
goal_nodes=goal_nodes, goal_node_ids=goal_node_ids, dist_to_goal=dists,
perturbs=perturbs, goal_perturbs=end_perturbs, history=history,
target_class=target_class, history_frames=[])
return start_node_ids
def take_action(self, current_node_ids, action, step_number):
"""In addition to returning the action, also returns the reward that the
agent receives."""
goal_number = step_number / self.task_params.num_steps
new_node_ids = GridWorld.take_action(self, current_node_ids, action)
rewards = []
for i, n in enumerate(new_node_ids):
reward = 0
if n == self.episode.goal_node_ids[goal_number][i]:
reward = self.task_params.reward_at_goal
reward = reward - self.task_params.reward_time_penalty
rewards.append(reward)
return new_node_ids, rewards
def get_optimal_action(self, current_node_ids, step_number):
"""Returns the optimal action from the current node."""
goal_number = step_number / self.task_params.num_steps
gtG = self.task.gtG
a = np.zeros((len(current_node_ids), self.task_params.num_actions), dtype=np.int32)
d_dict = self.episode.dist_to_goal[goal_number]
for i, c in enumerate(current_node_ids):
neigh = gtG.vertex(c).out_neighbours()
neigh_edge = gtG.vertex(c).out_edges()
ds = np.array([d_dict[i][int(x)] for x in neigh])
ds_min = np.min(ds)
for i_, e in enumerate(neigh_edge):
if ds[i_] == ds_min:
_ = gtG.ep['action'][e]
a[i, _] = 1
return a
def get_targets(self, current_node_ids, step_number):
"""Returns the target actions from the current node."""
action = self.get_optimal_action(current_node_ids, step_number)
action = np.expand_dims(action, axis=1)
return vars(utils.Foo(action=action))
def get_targets_name(self):
"""Returns the list of names of the targets."""
return ['action']
def cleanup(self):
self.episode = None
class VisualNavigationEnv(NavigationEnv):
"""Class for doing visual navigation in environments. Functions for computing
features on states, etc.
"""
def __init__(self, robot, env, task_params, category_list=None,
building_name=None, flip=False, logdir=None,
building_loader=None, r_obj=None):
tt = utils.Timer()
tt.tic()
Building.__init__(self, building_name, robot, env, category_list,
small=task_params.toy_problem, flip=flip, logdir=logdir,
building_loader=building_loader)
self.set_r_obj(r_obj)
self.task_params = task_params
self.task = None
self.episode = None
self._preprocess_for_task(self.task_params.building_seed)
if hasattr(self.task_params, 'map_scales'):
self.task.scaled_maps = resize_maps(
self.traversible.astype(np.float32)*1, self.task_params.map_scales,
self.task_params.map_resize_method)
else:
logging.fatal('VisualNavigationEnv does not support scale_f anymore.')
self.task.readout_maps_scaled = resize_maps(
self.traversible.astype(np.float32)*1,
self.task_params.readout_maps_scales,
self.task_params.map_resize_method)
tt.toc(log_at=1, log_str='VisualNavigationEnv __init__: ')
def get_weight(self):
return self.task.nodes.shape[0]
def get_common_data(self):
goal_nodes = self.episode.goal_nodes
start_nodes = self.episode.start_nodes
perturbs = self.episode.perturbs
goal_perturbs = self.episode.goal_perturbs
target_class = self.episode.target_class
goal_locs = []; rel_goal_locs = [];
for i in range(len(goal_nodes)):
end_nodes = goal_nodes[i]
goal_loc, _, _, goal_theta = self.get_loc_axis(
np.array(end_nodes), delta_theta=self.task.delta_theta,
perturb=goal_perturbs[:,i,:])
# Compute the relative location to all goals from the starting location.
loc, _, _, theta = self.get_loc_axis(np.array(start_nodes),
delta_theta=self.task.delta_theta,
perturb=perturbs[:,0,:])
r_goal, t_goal = _get_relative_goal_loc(goal_loc*1., loc, theta)
rel_goal_loc = np.concatenate((r_goal*np.cos(t_goal), r_goal*np.sin(t_goal),
np.cos(goal_theta-theta),
np.sin(goal_theta-theta)), axis=1)
rel_goal_locs.append(np.expand_dims(rel_goal_loc, axis=1))
goal_locs.append(np.expand_dims(goal_loc, axis=1))
map = self.traversible*1.
maps = np.repeat(np.expand_dims(np.expand_dims(map, axis=0), axis=0),
self.task_params.batch_size, axis=0)*1
if self.task_params.type[:14] == 'to_nearest_obj':
for i in range(self.task_params.batch_size):
maps[i,0,:,:] += 0.5*(self.task.class_maps_dilated[:,:,target_class[i]])
rel_goal_locs = np.concatenate(rel_goal_locs, axis=1)
goal_locs = np.concatenate(goal_locs, axis=1)
maps = np.expand_dims(maps, axis=-1)
if self.task_params.type[:14] == 'to_nearest_obj':
rel_goal_locs = np.zeros((self.task_params.batch_size, 1,
len(self.task_params.semantic_task.class_map_names)),
dtype=np.float32)
goal_locs = np.zeros((self.task_params.batch_size, 1, 2),
dtype=np.float32)
for i in range(self.task_params.batch_size):
t = target_class[i]
rel_goal_locs[i,0,t] = 1.
goal_locs[i,0,0] = t
goal_locs[i,0,1] = np.NaN
return vars(utils.Foo(orig_maps=maps, goal_loc=goal_locs,
rel_goal_loc_at_start=rel_goal_locs))
def pre_common_data(self, inputs):
return inputs
def get_features(self, current_node_ids, step_number):
task_params = self.task_params
goal_number = step_number / self.task_params.num_steps
end_nodes = self.task.nodes[self.episode.goal_node_ids[goal_number],:]*1
current_nodes = self.task.nodes[current_node_ids,:]*1
end_perturbs = self.episode.goal_perturbs[:,goal_number,:][:,np.newaxis,:]
perturbs = self.episode.perturbs
target_class = self.episode.target_class
# Append to history.
self.episode.history[:,step_number] = np.array(current_node_ids)
# Render out the images from current node.
outs = {}
if self.task_params.outputs.images:
imgs_all = []
imgs = self.render_nodes([tuple(x) for x in current_nodes],
perturb=perturbs[:,step_number,:])
imgs_all.append(imgs)
aux_delta_thetas = self.task_params.aux_delta_thetas
for i in range(len(aux_delta_thetas)):
imgs = self.render_nodes([tuple(x) for x in current_nodes],
perturb=perturbs[:,step_number,:],
aux_delta_theta=aux_delta_thetas[i])
imgs_all.append(imgs)
imgs_all = np.array(imgs_all) # A x B x H x W x C
imgs_all = np.transpose(imgs_all, axes=[1,0,2,3,4])
imgs_all = np.expand_dims(imgs_all, axis=1) # B x N x A x H x W x C
if task_params.num_history_frames > 0:
if step_number == 0:
# Append the same frame 4 times
for i in range(task_params.num_history_frames+1):
self.episode.history_frames.insert(0, imgs_all*1.)
self.episode.history_frames.insert(0, imgs_all)
self.episode.history_frames.pop()
imgs_all_with_history = np.concatenate(self.episode.history_frames, axis=2)
else:
imgs_all_with_history = imgs_all
outs['imgs'] = imgs_all_with_history # B x N x A x H x W x C
if self.task_params.outputs.node_ids:
outs['node_ids'] = np.array(current_node_ids).reshape((-1,1,1))
outs['perturbs'] = np.expand_dims(perturbs[:,step_number, :]*1., axis=1)
if self.task_params.outputs.analytical_counts:
assert(self.task_params.modalities == ['depth'])
d = image_pre(outs['imgs']*1., self.task_params.modalities)
cm = get_camera_matrix(self.task_params.img_width,
self.task_params.img_height,
self.task_params.img_fov)
XYZ = get_point_cloud_from_z(100./d[...,0], cm)
XYZ = make_geocentric(XYZ*100., self.robot.sensor_height,
self.robot.camera_elevation_degree)
for i in range(len(self.task_params.analytical_counts.map_sizes)):
non_linearity = self.task_params.analytical_counts.non_linearity[i]
count, isvalid = bin_points(XYZ*1.,
map_size=self.task_params.analytical_counts.map_sizes[i],
xy_resolution=self.task_params.analytical_counts.xy_resolution[i],
z_bins=self.task_params.analytical_counts.z_bins[i])
assert(count.shape[2] == 1), 'only works for n_views equal to 1.'
count = count[:,:,0,:,:,:]
isvalid = isvalid[:,:,0,:,:,:]
if non_linearity == 'none':
None
elif non_linearity == 'min10':
count = np.minimum(count, 10.)
elif non_linearity == 'sqrt':
count = np.sqrt(count)
else:
logging.fatal('Undefined non_linearity.')
outs['analytical_counts_{:d}'.format(i)] = count
# Compute the goal location in the cordinate frame of the robot.
if self.task_params.outputs.rel_goal_loc:
if self.task_params.type[:14] != 'to_nearest_obj':
loc, _, _, theta = self.get_loc_axis(current_nodes,
delta_theta=self.task.delta_theta,
perturb=perturbs[:,step_number,:])
goal_loc, _, _, goal_theta = self.get_loc_axis(end_nodes,
delta_theta=self.task.delta_theta,
perturb=end_perturbs[:,0,:])
r_goal, t_goal = _get_relative_goal_loc(goal_loc, loc, theta)
rel_goal_loc = np.concatenate((r_goal*np.cos(t_goal), r_goal*np.sin(t_goal),
np.cos(goal_theta-theta),
np.sin(goal_theta-theta)), axis=1)
outs['rel_goal_loc'] = np.expand_dims(rel_goal_loc, axis=1)
elif self.task_params.type[:14] == 'to_nearest_obj':
rel_goal_loc = np.zeros((self.task_params.batch_size, 1,
len(self.task_params.semantic_task.class_map_names)),
dtype=np.float32)
for i in range(self.task_params.batch_size):
t = target_class[i]
rel_goal_loc[i,0,t] = 1.
outs['rel_goal_loc'] = rel_goal_loc
# Location on map to plot the trajectory during validation.
if self.task_params.outputs.loc_on_map:
loc, x_axis, y_axis, theta = self.get_loc_axis(current_nodes,
delta_theta=self.task.delta_theta,
perturb=perturbs[:,step_number,:])
outs['loc_on_map'] = np.expand_dims(loc, axis=1)
# Compute gt_dist to goal
if self.task_params.outputs.gt_dist_to_goal:
gt_dist_to_goal = np.zeros((len(current_node_ids), 1), dtype=np.float32)
for i, n in enumerate(current_node_ids):
gt_dist_to_goal[i,0] = self.episode.dist_to_goal[goal_number][i][n]
outs['gt_dist_to_goal'] = np.expand_dims(gt_dist_to_goal, axis=1)
# Free space in front of you, map and goal as images.
if self.task_params.outputs.ego_maps:
loc, x_axis, y_axis, theta = self.get_loc_axis(current_nodes,
delta_theta=self.task.delta_theta,
perturb=perturbs[:,step_number,:])
maps = generate_egocentric_maps(self.task.scaled_maps,
self.task_params.map_scales,
self.task_params.map_crop_sizes, loc,
x_axis, y_axis, theta)
for i in range(len(self.task_params.map_scales)):
outs['ego_maps_{:d}'.format(i)] = \
np.expand_dims(np.expand_dims(maps[i], axis=1), axis=-1)
if self.task_params.outputs.readout_maps:
loc, x_axis, y_axis, theta = self.get_loc_axis(current_nodes,
delta_theta=self.task.delta_theta,
perturb=perturbs[:,step_number,:])
maps = generate_egocentric_maps(self.task.readout_maps_scaled,
self.task_params.readout_maps_scales,
self.task_params.readout_maps_crop_sizes,
loc, x_axis, y_axis, theta)
for i in range(len(self.task_params.readout_maps_scales)):
outs['readout_maps_{:d}'.format(i)] = \
np.expand_dims(np.expand_dims(maps[i], axis=1), axis=-1)
# Images for the goal.
if self.task_params.outputs.ego_goal_imgs:
if self.task_params.type[:14] != 'to_nearest_obj':
loc, x_axis, y_axis, theta = self.get_loc_axis(current_nodes,
delta_theta=self.task.delta_theta,
perturb=perturbs[:,step_number,:])
goal_loc, _, _, _ = self.get_loc_axis(end_nodes,
delta_theta=self.task.delta_theta,
perturb=end_perturbs[:,0,:])
rel_goal_orientation = np.mod(
np.int32(current_nodes[:,2:] - end_nodes[:,2:]), self.task_params.n_ori)
goal_dist, goal_theta = _get_relative_goal_loc(goal_loc, loc, theta)
goals = generate_goal_images(self.task_params.map_scales,
self.task_params.map_crop_sizes,
self.task_params.n_ori, goal_dist,
goal_theta, rel_goal_orientation)
for i in range(len(self.task_params.map_scales)):
outs['ego_goal_imgs_{:d}'.format(i)] = np.expand_dims(goals[i], axis=1)
elif self.task_params.type[:14] == 'to_nearest_obj':
for i in range(len(self.task_params.map_scales)):
num_classes = len(self.task_params.semantic_task.class_map_names)
outs['ego_goal_imgs_{:d}'.format(i)] = np.zeros((self.task_params.batch_size, 1,
self.task_params.map_crop_sizes[i],
self.task_params.map_crop_sizes[i],
self.task_params.goal_channels))
for i in range(self.task_params.batch_size):
t = target_class[i]
for j in range(len(self.task_params.map_scales)):
outs['ego_goal_imgs_{:d}'.format(j)][i,:,:,:,t] = 1.
# Incremental locs and theta (for map warping), always in the original scale
# of the map, the subequent steps in the tf code scale appropriately.
# Scaling is done by just multiplying incremental_locs appropriately.
if self.task_params.outputs.egomotion:
if step_number == 0:
# Zero Ego Motion
incremental_locs = np.zeros((self.task_params.batch_size, 1, 2), dtype=np.float32)
incremental_thetas = np.zeros((self.task_params.batch_size, 1, 1), dtype=np.float32)
else:
previous_nodes = self.task.nodes[self.episode.history[:,step_number-1], :]*1
loc, _, _, theta = self.get_loc_axis(current_nodes,
delta_theta=self.task.delta_theta,
perturb=perturbs[:,step_number,:])
previous_loc, _, _, previous_theta = self.get_loc_axis(
previous_nodes, delta_theta=self.task.delta_theta,
perturb=perturbs[:,step_number-1,:])
incremental_locs_ = np.reshape(loc-previous_loc, [self.task_params.batch_size, 1, -1])
t = -np.pi/2+np.reshape(theta*1, [self.task_params.batch_size, 1, -1])
incremental_locs = incremental_locs_*1
incremental_locs[:,:,0] = np.sum(incremental_locs_ *
np.concatenate((np.cos(t), np.sin(t)),
axis=-1), axis=-1)
incremental_locs[:,:,1] = np.sum(incremental_locs_ *
np.concatenate((np.cos(t+np.pi/2),
np.sin(t+np.pi/2)),
axis=-1), axis=-1)
incremental_thetas = np.reshape(theta-previous_theta,
[self.task_params.batch_size, 1, -1])
outs['incremental_locs'] = incremental_locs
outs['incremental_thetas'] = incremental_thetas
if self.task_params.outputs.visit_count:
# Output the visit count for this state, how many times has the current
# state been visited, and how far in the history was the last visit
# (except this one)
visit_count = np.zeros((self.task_params.batch_size, 1), dtype=np.int32)
last_visit = -np.ones((self.task_params.batch_size, 1), dtype=np.int32)
if step_number >= 1:
h = self.episode.history[:,:(step_number)]
visit_count[:,0] = np.sum(h == np.array(current_node_ids).reshape([-1,1]),
axis=1)
last_visit[:,0] = np.argmax(h[:,::-1] == np.array(current_node_ids).reshape([-1,1]),
axis=1) + 1
last_visit[visit_count == 0] = -1 # -1 if not visited.
outs['visit_count'] = np.expand_dims(visit_count, axis=1)
outs['last_visit'] = np.expand_dims(last_visit, axis=1)
return outs
def get_features_name(self):
f = []
if self.task_params.outputs.images:
f.append('imgs')
if self.task_params.outputs.rel_goal_loc:
f.append('rel_goal_loc')
if self.task_params.outputs.loc_on_map:
f.append('loc_on_map')
if self.task_params.outputs.gt_dist_to_goal:
f.append('gt_dist_to_goal')
if self.task_params.outputs.ego_maps:
for i in range(len(self.task_params.map_scales)):
f.append('ego_maps_{:d}'.format(i))
if self.task_params.outputs.readout_maps:
for i in range(len(self.task_params.readout_maps_scales)):
f.append('readout_maps_{:d}'.format(i))
if self.task_params.outputs.ego_goal_imgs:
for i in range(len(self.task_params.map_scales)):
f.append('ego_goal_imgs_{:d}'.format(i))
if self.task_params.outputs.egomotion:
f.append('incremental_locs')
f.append('incremental_thetas')
if self.task_params.outputs.visit_count:
f.append('visit_count')
f.append('last_visit')
if self.task_params.outputs.analytical_counts:
for i in range(len(self.task_params.analytical_counts.map_sizes)):
f.append('analytical_counts_{:d}'.format(i))
if self.task_params.outputs.node_ids:
f.append('node_ids')
f.append('perturbs')
return f
def pre_features(self, inputs):
if self.task_params.outputs.images:
inputs['imgs'] = image_pre(inputs['imgs'], self.task_params.modalities)
return inputs
class BuildingMultiplexer():
def __init__(self, args, task_number):
params = vars(args)
for k in params.keys():
setattr(self, k, params[k])
self.task_number = task_number
self._pick_data(task_number)
logging.info('Env Class: %s.', self.env_class)
if self.task_params.task == 'planning':
self._setup_planner()
elif self.task_params.task == 'mapping':
self._setup_mapper()
elif self.task_params.task == 'map+plan':
self._setup_mapper()
else:
logging.error('Undefined task: %s'.format(self.task_params.task))
def _pick_data(self, task_number):
logging.error('Input Building Names: %s', self.building_names)
self.flip = [np.mod(task_number / len(self.building_names), 2) == 1]
id = np.mod(task_number, len(self.building_names))
self.building_names = [self.building_names[id]]
self.task_params.building_seed = task_number
logging.error('BuildingMultiplexer: Picked Building Name: %s', self.building_names)
self.building_names = self.building_names[0].split('+')
self.flip = [self.flip[0] for _ in self.building_names]
logging.error('BuildingMultiplexer: Picked Building Name: %s', self.building_names)
logging.error('BuildingMultiplexer: Flipping Buildings: %s', self.flip)
logging.error('BuildingMultiplexer: Set building_seed: %d', self.task_params.building_seed)
self.num_buildings = len(self.building_names)
logging.error('BuildingMultiplexer: Num buildings: %d', self.num_buildings)
def _setup_planner(self):
# Load building env class.
self.buildings = []
for i, building_name in enumerate(self.building_names):
b = self.env_class(robot=self.robot, env=self.env,
task_params=self.task_params,
building_name=building_name, flip=self.flip[i],
logdir=self.logdir, building_loader=self.dataset)
self.buildings.append(b)
def _setup_mapper(self):
# Set up the renderer.
cp = self.camera_param
rgb_shader, d_shader = sru.get_shaders(cp.modalities)
r_obj = SwiftshaderRenderer()
r_obj.init_display(width=cp.width, height=cp.height, fov=cp.fov,
z_near=cp.z_near, z_far=cp.z_far, rgb_shader=rgb_shader,
d_shader=d_shader)
self.r_obj = r_obj
r_obj.clear_scene()
# Load building env class.
self.buildings = []
wt = []
for i, building_name in enumerate(self.building_names):
b = self.env_class(robot=self.robot, env=self.env,
task_params=self.task_params,
building_name=building_name, flip=self.flip[i],
logdir=self.logdir, building_loader=self.dataset,
r_obj=r_obj)
wt.append(b.get_weight())
b.load_building_into_scene()
b.set_building_visibility(False)
self.buildings.append(b)
wt = np.array(wt).astype(np.float32)
wt = wt / np.sum(wt+0.0001)
self.building_sampling_weights = wt
def sample_building(self, rng):
if self.num_buildings == 1:
building_id = rng.choice(range(len(self.building_names)))
else:
building_id = rng.choice(self.num_buildings,
p=self.building_sampling_weights)
b = self.buildings[building_id]
instances = b._gen_rng(rng)
self._building_id = building_id
return self.buildings[building_id], instances
def sample_env(self, rngs):
rng = rngs[0];
if self.num_buildings == 1:
building_id = rng.choice(range(len(self.building_names)))
else:
building_id = rng.choice(self.num_buildings,
p=self.building_sampling_weights)
return self.buildings[building_id]
def pre(self, inputs):
return self.buildings[self._building_id].pre(inputs)
def __del__(self):
self.r_obj.clear_scene()
logging.error('Clearing scene.')
|