File size: 18,950 Bytes
18ddfe2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 |
# Copyright 2017 Google, Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Scripts for meta-optimization."""
from __future__ import print_function
import os
import tensorflow as tf
import metaopt
from learned_optimizer.optimizer import coordinatewise_rnn
from learned_optimizer.optimizer import global_learning_rate
from learned_optimizer.optimizer import hierarchical_rnn
from learned_optimizer.optimizer import learning_rate_schedule
from learned_optimizer.optimizer import trainable_adam
from learned_optimizer.problems import problem_sets as ps
from learned_optimizer.problems import problem_spec
tf.app.flags.DEFINE_string("train_dir", "/tmp/lol/",
"""Directory to store parameters and results.""")
tf.app.flags.DEFINE_integer("task", 0,
"""Task id of the replica running the training.""")
tf.app.flags.DEFINE_integer("worker_tasks", 1,
"""Number of tasks in the worker job.""")
tf.app.flags.DEFINE_integer("num_problems", 1000,
"""Number of sub-problems to run.""")
tf.app.flags.DEFINE_integer("num_meta_iterations", 5,
"""Number of meta-iterations to optimize.""")
tf.app.flags.DEFINE_integer("num_unroll_scale", 40,
"""The scale parameter of the exponential
distribution from which the number of partial
unrolls is drawn""")
tf.app.flags.DEFINE_integer("min_num_unrolls", 1,
"""The minimum number of unrolls per problem.""")
tf.app.flags.DEFINE_integer("num_partial_unroll_itr_scale", 200,
"""The scale parameter of the exponential
distribution from which the number of iterations
per unroll is drawn.""")
tf.app.flags.DEFINE_integer("min_num_itr_partial_unroll", 50,
"""The minimum number of iterations for one
unroll.""")
tf.app.flags.DEFINE_string("optimizer", "HierarchicalRNN",
"""Which meta-optimizer to train.""")
# CoordinatewiseRNN-specific flags
tf.app.flags.DEFINE_integer("cell_size", 20,
"""Size of the RNN hidden state in each layer.""")
tf.app.flags.DEFINE_integer("num_cells", 2,
"""Number of RNN layers.""")
tf.app.flags.DEFINE_string("cell_cls", "GRUCell",
"""Type of RNN cell to use.""")
# Metaoptimization parameters
tf.app.flags.DEFINE_float("meta_learning_rate", 1e-6,
"""The learning rate for the meta-optimizer.""")
tf.app.flags.DEFINE_float("gradient_clip_level", 1e4,
"""The level to clip gradients to.""")
# Training set selection
tf.app.flags.DEFINE_boolean("include_quadratic_problems", False,
"""Include non-noisy quadratic problems.""")
tf.app.flags.DEFINE_boolean("include_noisy_quadratic_problems", True,
"""Include noisy quadratic problems.""")
tf.app.flags.DEFINE_boolean("include_large_quadratic_problems", True,
"""Include very large quadratic problems.""")
tf.app.flags.DEFINE_boolean("include_bowl_problems", True,
"""Include 2D bowl problems.""")
tf.app.flags.DEFINE_boolean("include_softmax_2_class_problems", True,
"""Include 2-class logistic regression problems.""")
tf.app.flags.DEFINE_boolean("include_noisy_softmax_2_class_problems", True,
"""Include noisy 2-class logistic regression
problems.""")
tf.app.flags.DEFINE_boolean("include_optimization_test_problems", True,
"""Include non-noisy versions of classic
optimization test problems, e.g. Rosenbrock.""")
tf.app.flags.DEFINE_boolean("include_noisy_optimization_test_problems", True,
"""Include gradient-noise versions of classic
optimization test problems, e.g. Rosenbrock""")
tf.app.flags.DEFINE_boolean("include_fully_connected_random_2_class_problems",
True, """Include MLP problems for 2 classes.""")
tf.app.flags.DEFINE_boolean("include_matmul_problems", True,
"""Include matrix multiplication problems.""")
tf.app.flags.DEFINE_boolean("include_log_objective_problems", True,
"""Include problems where the objective is the log
objective of another problem, e.g. Bowl.""")
tf.app.flags.DEFINE_boolean("include_rescale_problems", True,
"""Include problems where the parameters are scaled
version of the original parameters.""")
tf.app.flags.DEFINE_boolean("include_norm_problems", True,
"""Include problems where the objective is the
N-norm of another problem, e.g. Quadratic.""")
tf.app.flags.DEFINE_boolean("include_sum_problems", True,
"""Include problems where the objective is the sum
of the objectives of the subproblems that make
up the problem parameters. Per-problem tensors
are still independent of each other.""")
tf.app.flags.DEFINE_boolean("include_sparse_gradient_problems", True,
"""Include problems where the gradient is set to 0
with some high probability.""")
tf.app.flags.DEFINE_boolean("include_sparse_softmax_problems", False,
"""Include sparse softmax problems.""")
tf.app.flags.DEFINE_boolean("include_one_hot_sparse_softmax_problems", False,
"""Include one-hot sparse softmax problems.""")
tf.app.flags.DEFINE_boolean("include_noisy_bowl_problems", True,
"""Include noisy bowl problems.""")
tf.app.flags.DEFINE_boolean("include_noisy_norm_problems", True,
"""Include noisy norm problems.""")
tf.app.flags.DEFINE_boolean("include_noisy_sum_problems", True,
"""Include noisy sum problems.""")
tf.app.flags.DEFINE_boolean("include_sum_of_quadratics_problems", False,
"""Include sum of quadratics problems.""")
tf.app.flags.DEFINE_boolean("include_projection_quadratic_problems", False,
"""Include projection quadratic problems.""")
tf.app.flags.DEFINE_boolean("include_outward_snake_problems", False,
"""Include outward snake problems.""")
tf.app.flags.DEFINE_boolean("include_dependency_chain_problems", False,
"""Include dependency chain problems.""")
tf.app.flags.DEFINE_boolean("include_min_max_well_problems", False,
"""Include min-max well problems.""")
# Optimizer parameters: initialization and scale values
tf.app.flags.DEFINE_float("min_lr", 1e-6,
"""The minimum initial learning rate.""")
tf.app.flags.DEFINE_float("max_lr", 1e-2,
"""The maximum initial learning rate.""")
# Optimizer parameters: small features.
tf.app.flags.DEFINE_boolean("zero_init_lr_weights", True,
"""Whether to initialize the learning rate weights
to 0 rather than the scaled random initialization
used for other RNN variables.""")
tf.app.flags.DEFINE_boolean("use_relative_lr", True,
"""Whether to use the relative learning rate as an
input during training. Can only be used if
learnable_decay is also True.""")
tf.app.flags.DEFINE_boolean("use_extreme_indicator", False,
"""Whether to use the extreme indicator for learning
rates as an input during training. Can only be
used if learnable_decay is also True.""")
tf.app.flags.DEFINE_boolean("use_log_means_squared", True,
"""Whether to track the log of the mean squared
grads instead of the means squared grads.""")
tf.app.flags.DEFINE_boolean("use_problem_lr_mean", True,
"""Whether to use the mean over all learning rates
in the problem when calculating the relative
learning rate.""")
# Optimizer parameters: major features
tf.app.flags.DEFINE_boolean("learnable_decay", True,
"""Whether to learn weights that dynamically
modulate the input scale via RMS decay.""")
tf.app.flags.DEFINE_boolean("dynamic_output_scale", True,
"""Whether to learn weights that dynamically
modulate the output scale.""")
tf.app.flags.DEFINE_boolean("use_log_objective", True,
"""Whether to use the log of the scaled objective
rather than just the scaled obj for training.""")
tf.app.flags.DEFINE_boolean("use_attention", False,
"""Whether to learn where to attend.""")
tf.app.flags.DEFINE_boolean("use_second_derivatives", True,
"""Whether to use second derivatives.""")
tf.app.flags.DEFINE_integer("num_gradient_scales", 4,
"""How many different timescales to keep for
gradient history. If > 1, also learns a scale
factor for gradient history.""")
tf.app.flags.DEFINE_float("max_log_lr", 33,
"""The maximum log learning rate allowed.""")
tf.app.flags.DEFINE_float("objective_training_max_multiplier", -1,
"""How much the objective can grow before training on
this problem / param pair is terminated. Sets a max
on the objective value when multiplied by the
initial objective. If <= 0, not used.""")
tf.app.flags.DEFINE_boolean("use_gradient_shortcut", True,
"""Whether to add a learned affine projection of the
gradient to the update delta in addition to the
gradient function computed by the RNN.""")
tf.app.flags.DEFINE_boolean("use_lr_shortcut", False,
"""Whether to add the difference between the current
learning rate and the desired learning rate to
the RNN input.""")
tf.app.flags.DEFINE_boolean("use_grad_products", True,
"""Whether to use gradient products in the input to
the RNN. Only applicable when num_gradient_scales
> 1.""")
tf.app.flags.DEFINE_boolean("use_multiple_scale_decays", False,
"""Whether to use many-timescale scale decays.""")
tf.app.flags.DEFINE_boolean("use_numerator_epsilon", False,
"""Whether to use epsilon in the numerator of the
log objective.""")
tf.app.flags.DEFINE_boolean("learnable_inp_decay", True,
"""Whether to learn input decay weight and bias.""")
tf.app.flags.DEFINE_boolean("learnable_rnn_init", True,
"""Whether to learn RNN state initialization.""")
FLAGS = tf.app.flags.FLAGS
# The Size of the RNN hidden state in each layer:
# [PerParam, PerTensor, Global]. The length of this list must be 1, 2, or 3.
# If less than 3, the Global and/or PerTensor RNNs will not be created.
HRNN_CELL_SIZES = [10, 20, 20]
def register_optimizers():
opts = {}
opts["CoordinatewiseRNN"] = coordinatewise_rnn.CoordinatewiseRNN
opts["GlobalLearningRate"] = global_learning_rate.GlobalLearningRate
opts["HierarchicalRNN"] = hierarchical_rnn.HierarchicalRNN
opts["LearningRateSchedule"] = learning_rate_schedule.LearningRateSchedule
opts["TrainableAdam"] = trainable_adam.TrainableAdam
return opts
def main(unused_argv):
"""Runs the main script."""
opts = register_optimizers()
# Choose a set of problems to optimize. By default this includes quadratics,
# 2-dimensional bowls, 2-class softmax problems, and non-noisy optimization
# test problems (e.g. Rosenbrock, Beale)
problems_and_data = []
if FLAGS.include_sparse_softmax_problems:
problems_and_data.extend(ps.sparse_softmax_2_class_sparse_problems())
if FLAGS.include_one_hot_sparse_softmax_problems:
problems_and_data.extend(
ps.one_hot_sparse_softmax_2_class_sparse_problems())
if FLAGS.include_quadratic_problems:
problems_and_data.extend(ps.quadratic_problems())
if FLAGS.include_noisy_quadratic_problems:
problems_and_data.extend(ps.quadratic_problems_noisy())
if FLAGS.include_large_quadratic_problems:
problems_and_data.extend(ps.quadratic_problems_large())
if FLAGS.include_bowl_problems:
problems_and_data.extend(ps.bowl_problems())
if FLAGS.include_noisy_bowl_problems:
problems_and_data.extend(ps.bowl_problems_noisy())
if FLAGS.include_softmax_2_class_problems:
problems_and_data.extend(ps.softmax_2_class_problems())
if FLAGS.include_noisy_softmax_2_class_problems:
problems_and_data.extend(ps.softmax_2_class_problems_noisy())
if FLAGS.include_optimization_test_problems:
problems_and_data.extend(ps.optimization_test_problems())
if FLAGS.include_noisy_optimization_test_problems:
problems_and_data.extend(ps.optimization_test_problems_noisy())
if FLAGS.include_fully_connected_random_2_class_problems:
problems_and_data.extend(ps.fully_connected_random_2_class_problems())
if FLAGS.include_matmul_problems:
problems_and_data.extend(ps.matmul_problems())
if FLAGS.include_log_objective_problems:
problems_and_data.extend(ps.log_objective_problems())
if FLAGS.include_rescale_problems:
problems_and_data.extend(ps.rescale_problems())
if FLAGS.include_norm_problems:
problems_and_data.extend(ps.norm_problems())
if FLAGS.include_noisy_norm_problems:
problems_and_data.extend(ps.norm_problems_noisy())
if FLAGS.include_sum_problems:
problems_and_data.extend(ps.sum_problems())
if FLAGS.include_noisy_sum_problems:
problems_and_data.extend(ps.sum_problems_noisy())
if FLAGS.include_sparse_gradient_problems:
problems_and_data.extend(ps.sparse_gradient_problems())
if FLAGS.include_fully_connected_random_2_class_problems:
problems_and_data.extend(ps.sparse_gradient_problems_mlp())
if FLAGS.include_min_max_well_problems:
problems_and_data.extend(ps.min_max_well_problems())
if FLAGS.include_sum_of_quadratics_problems:
problems_and_data.extend(ps.sum_of_quadratics_problems())
if FLAGS.include_projection_quadratic_problems:
problems_and_data.extend(ps.projection_quadratic_problems())
if FLAGS.include_outward_snake_problems:
problems_and_data.extend(ps.outward_snake_problems())
if FLAGS.include_dependency_chain_problems:
problems_and_data.extend(ps.dependency_chain_problems())
# log directory
logdir = os.path.join(FLAGS.train_dir,
"{}_{}_{}_{}".format(FLAGS.optimizer,
FLAGS.cell_cls,
FLAGS.cell_size,
FLAGS.num_cells))
# get the optimizer class and arguments
optimizer_cls = opts[FLAGS.optimizer]
assert len(HRNN_CELL_SIZES) in [1, 2, 3]
optimizer_args = (HRNN_CELL_SIZES,)
optimizer_kwargs = {
"init_lr_range": (FLAGS.min_lr, FLAGS.max_lr),
"learnable_decay": FLAGS.learnable_decay,
"dynamic_output_scale": FLAGS.dynamic_output_scale,
"cell_cls": getattr(tf.contrib.rnn, FLAGS.cell_cls),
"use_attention": FLAGS.use_attention,
"use_log_objective": FLAGS.use_log_objective,
"num_gradient_scales": FLAGS.num_gradient_scales,
"zero_init_lr_weights": FLAGS.zero_init_lr_weights,
"use_log_means_squared": FLAGS.use_log_means_squared,
"use_relative_lr": FLAGS.use_relative_lr,
"use_extreme_indicator": FLAGS.use_extreme_indicator,
"max_log_lr": FLAGS.max_log_lr,
"obj_train_max_multiplier": FLAGS.objective_training_max_multiplier,
"use_problem_lr_mean": FLAGS.use_problem_lr_mean,
"use_gradient_shortcut": FLAGS.use_gradient_shortcut,
"use_second_derivatives": FLAGS.use_second_derivatives,
"use_lr_shortcut": FLAGS.use_lr_shortcut,
"use_grad_products": FLAGS.use_grad_products,
"use_multiple_scale_decays": FLAGS.use_multiple_scale_decays,
"use_numerator_epsilon": FLAGS.use_numerator_epsilon,
"learnable_inp_decay": FLAGS.learnable_inp_decay,
"learnable_rnn_init": FLAGS.learnable_rnn_init,
}
optimizer_spec = problem_spec.Spec(
optimizer_cls, optimizer_args, optimizer_kwargs)
# make log directory
tf.gfile.MakeDirs(logdir)
is_chief = FLAGS.task == 0
# if this is a distributed run, make the chief run through problems in order
select_random_problems = FLAGS.worker_tasks == 1 or not is_chief
def num_unrolls():
return metaopt.sample_numiter(FLAGS.num_unroll_scale, FLAGS.min_num_unrolls)
def num_partial_unroll_itrs():
return metaopt.sample_numiter(FLAGS.num_partial_unroll_itr_scale,
FLAGS.min_num_itr_partial_unroll)
# run it
metaopt.train_optimizer(
logdir,
optimizer_spec,
problems_and_data,
FLAGS.num_problems,
FLAGS.num_meta_iterations,
num_unrolls,
num_partial_unroll_itrs,
learning_rate=FLAGS.meta_learning_rate,
gradient_clip=FLAGS.gradient_clip_level,
is_chief=is_chief,
select_random_problems=select_random_problems,
obj_train_max_multiplier=FLAGS.objective_training_max_multiplier,
callbacks=[])
return 0
if __name__ == "__main__":
tf.app.run()
|