File size: 15,718 Bytes
18ddfe2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 |
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""AutoAugment Train/Eval module.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import contextlib
import os
import time
import custom_ops as ops
import data_utils
import helper_utils
import numpy as np
from shake_drop import build_shake_drop_model
from shake_shake import build_shake_shake_model
import tensorflow as tf
from wrn import build_wrn_model
tf.flags.DEFINE_string('model_name', 'wrn',
'wrn, shake_shake_32, shake_shake_96, shake_shake_112, '
'pyramid_net')
tf.flags.DEFINE_string('checkpoint_dir', '/tmp/training', 'Training Directory.')
tf.flags.DEFINE_string('data_path', '/tmp/data',
'Directory where dataset is located.')
tf.flags.DEFINE_string('dataset', 'cifar10',
'Dataset to train with. Either cifar10 or cifar100')
tf.flags.DEFINE_integer('use_cpu', 1, '1 if use CPU, else GPU.')
FLAGS = tf.flags.FLAGS
arg_scope = tf.contrib.framework.arg_scope
def setup_arg_scopes(is_training):
"""Sets up the argscopes that will be used when building an image model.
Args:
is_training: Is the model training or not.
Returns:
Arg scopes to be put around the model being constructed.
"""
batch_norm_decay = 0.9
batch_norm_epsilon = 1e-5
batch_norm_params = {
# Decay for the moving averages.
'decay': batch_norm_decay,
# epsilon to prevent 0s in variance.
'epsilon': batch_norm_epsilon,
'scale': True,
# collection containing the moving mean and moving variance.
'is_training': is_training,
}
scopes = []
scopes.append(arg_scope([ops.batch_norm], **batch_norm_params))
return scopes
def build_model(inputs, num_classes, is_training, hparams):
"""Constructs the vision model being trained/evaled.
Args:
inputs: input features/images being fed to the image model build built.
num_classes: number of output classes being predicted.
is_training: is the model training or not.
hparams: additional hyperparameters associated with the image model.
Returns:
The logits of the image model.
"""
scopes = setup_arg_scopes(is_training)
with contextlib.nested(*scopes):
if hparams.model_name == 'pyramid_net':
logits = build_shake_drop_model(
inputs, num_classes, is_training)
elif hparams.model_name == 'wrn':
logits = build_wrn_model(
inputs, num_classes, hparams.wrn_size)
elif hparams.model_name == 'shake_shake':
logits = build_shake_shake_model(
inputs, num_classes, hparams, is_training)
return logits
class CifarModel(object):
"""Builds an image model for Cifar10/Cifar100."""
def __init__(self, hparams):
self.hparams = hparams
def build(self, mode):
"""Construct the cifar model."""
assert mode in ['train', 'eval']
self.mode = mode
self._setup_misc(mode)
self._setup_images_and_labels()
self._build_graph(self.images, self.labels, mode)
self.init = tf.group(tf.global_variables_initializer(),
tf.local_variables_initializer())
def _setup_misc(self, mode):
"""Sets up miscellaneous in the cifar model constructor."""
self.lr_rate_ph = tf.Variable(0.0, name='lrn_rate', trainable=False)
self.reuse = None if (mode == 'train') else True
self.batch_size = self.hparams.batch_size
if mode == 'eval':
self.batch_size = 25
def _setup_images_and_labels(self):
"""Sets up image and label placeholders for the cifar model."""
if FLAGS.dataset == 'cifar10':
self.num_classes = 10
else:
self.num_classes = 100
self.images = tf.placeholder(tf.float32, [self.batch_size, 32, 32, 3])
self.labels = tf.placeholder(tf.float32,
[self.batch_size, self.num_classes])
def assign_epoch(self, session, epoch_value):
session.run(self._epoch_update, feed_dict={self._new_epoch: epoch_value})
def _build_graph(self, images, labels, mode):
"""Constructs the TF graph for the cifar model.
Args:
images: A 4-D image Tensor
labels: A 2-D labels Tensor.
mode: string indicating training mode ( e.g., 'train', 'valid', 'test').
"""
is_training = 'train' in mode
if is_training:
self.global_step = tf.train.get_or_create_global_step()
logits = build_model(
images,
self.num_classes,
is_training,
self.hparams)
self.predictions, self.cost = helper_utils.setup_loss(
logits, labels)
self.accuracy, self.eval_op = tf.metrics.accuracy(
tf.argmax(labels, 1), tf.argmax(self.predictions, 1))
self._calc_num_trainable_params()
# Adds L2 weight decay to the cost
self.cost = helper_utils.decay_weights(self.cost,
self.hparams.weight_decay_rate)
if is_training:
self._build_train_op()
# Setup checkpointing for this child model
# Keep 2 or more checkpoints around during training.
with tf.device('/cpu:0'):
self.saver = tf.train.Saver(max_to_keep=2)
self.init = tf.group(tf.global_variables_initializer(),
tf.local_variables_initializer())
def _calc_num_trainable_params(self):
self.num_trainable_params = np.sum([
np.prod(var.get_shape().as_list()) for var in tf.trainable_variables()
])
tf.logging.info('number of trainable params: {}'.format(
self.num_trainable_params))
def _build_train_op(self):
"""Builds the train op for the cifar model."""
hparams = self.hparams
tvars = tf.trainable_variables()
grads = tf.gradients(self.cost, tvars)
if hparams.gradient_clipping_by_global_norm > 0.0:
grads, norm = tf.clip_by_global_norm(
grads, hparams.gradient_clipping_by_global_norm)
tf.summary.scalar('grad_norm', norm)
# Setup the initial learning rate
initial_lr = self.lr_rate_ph
optimizer = tf.train.MomentumOptimizer(
initial_lr,
0.9,
use_nesterov=True)
self.optimizer = optimizer
apply_op = optimizer.apply_gradients(
zip(grads, tvars), global_step=self.global_step, name='train_step')
train_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies([apply_op]):
self.train_op = tf.group(*train_ops)
class CifarModelTrainer(object):
"""Trains an instance of the CifarModel class."""
def __init__(self, hparams):
self._session = None
self.hparams = hparams
self.model_dir = os.path.join(FLAGS.checkpoint_dir, 'model')
self.log_dir = os.path.join(FLAGS.checkpoint_dir, 'log')
# Set the random seed to be sure the same validation set
# is used for each model
np.random.seed(0)
self.data_loader = data_utils.DataSet(hparams)
np.random.seed() # Put the random seed back to random
self.data_loader.reset()
def save_model(self, step=None):
"""Dumps model into the backup_dir.
Args:
step: If provided, creates a checkpoint with the given step
number, instead of overwriting the existing checkpoints.
"""
model_save_name = os.path.join(self.model_dir, 'model.ckpt')
if not tf.gfile.IsDirectory(self.model_dir):
tf.gfile.MakeDirs(self.model_dir)
self.saver.save(self.session, model_save_name, global_step=step)
tf.logging.info('Saved child model')
def extract_model_spec(self):
"""Loads a checkpoint with the architecture structure stored in the name."""
checkpoint_path = tf.train.latest_checkpoint(self.model_dir)
if checkpoint_path is not None:
self.saver.restore(self.session, checkpoint_path)
tf.logging.info('Loaded child model checkpoint from %s',
checkpoint_path)
else:
self.save_model(step=0)
def eval_child_model(self, model, data_loader, mode):
"""Evaluate the child model.
Args:
model: image model that will be evaluated.
data_loader: dataset object to extract eval data from.
mode: will the model be evalled on train, val or test.
Returns:
Accuracy of the model on the specified dataset.
"""
tf.logging.info('Evaluating child model in mode %s', mode)
while True:
try:
with self._new_session(model):
accuracy = helper_utils.eval_child_model(
self.session,
model,
data_loader,
mode)
tf.logging.info('Eval child model accuracy: {}'.format(accuracy))
# If epoch trained without raising the below errors, break
# from loop.
break
except (tf.errors.AbortedError, tf.errors.UnavailableError) as e:
tf.logging.info('Retryable error caught: %s. Retrying.', e)
return accuracy
@contextlib.contextmanager
def _new_session(self, m):
"""Creates a new session for model m."""
# Create a new session for this model, initialize
# variables, and save / restore from
# checkpoint.
self._session = tf.Session(
'',
config=tf.ConfigProto(
allow_soft_placement=True, log_device_placement=False))
self.session.run(m.init)
# Load in a previous checkpoint, or save this one
self.extract_model_spec()
try:
yield
finally:
tf.Session.reset('')
self._session = None
def _build_models(self):
"""Builds the image models for train and eval."""
# Determine if we should build the train and eval model. When using
# distributed training we only want to build one or the other and not both.
with tf.variable_scope('model', use_resource=False):
m = CifarModel(self.hparams)
m.build('train')
self._num_trainable_params = m.num_trainable_params
self._saver = m.saver
with tf.variable_scope('model', reuse=True, use_resource=False):
meval = CifarModel(self.hparams)
meval.build('eval')
return m, meval
def _calc_starting_epoch(self, m):
"""Calculates the starting epoch for model m based on global step."""
hparams = self.hparams
batch_size = hparams.batch_size
steps_per_epoch = int(hparams.train_size / batch_size)
with self._new_session(m):
curr_step = self.session.run(m.global_step)
total_steps = steps_per_epoch * hparams.num_epochs
epochs_left = (total_steps - curr_step) // steps_per_epoch
starting_epoch = hparams.num_epochs - epochs_left
return starting_epoch
def _run_training_loop(self, m, curr_epoch):
"""Trains the cifar model `m` for one epoch."""
start_time = time.time()
while True:
try:
with self._new_session(m):
train_accuracy = helper_utils.run_epoch_training(
self.session, m, self.data_loader, curr_epoch)
tf.logging.info('Saving model after epoch')
self.save_model(step=curr_epoch)
break
except (tf.errors.AbortedError, tf.errors.UnavailableError) as e:
tf.logging.info('Retryable error caught: %s. Retrying.', e)
tf.logging.info('Finished epoch: {}'.format(curr_epoch))
tf.logging.info('Epoch time(min): {}'.format(
(time.time() - start_time) / 60.0))
return train_accuracy
def _compute_final_accuracies(self, meval):
"""Run once training is finished to compute final val/test accuracies."""
valid_accuracy = self.eval_child_model(meval, self.data_loader, 'val')
if self.hparams.eval_test:
test_accuracy = self.eval_child_model(meval, self.data_loader, 'test')
else:
test_accuracy = 0
tf.logging.info('Test Accuracy: {}'.format(test_accuracy))
return valid_accuracy, test_accuracy
def run_model(self):
"""Trains and evalutes the image model."""
hparams = self.hparams
# Build the child graph
with tf.Graph().as_default(), tf.device(
'/cpu:0' if FLAGS.use_cpu else '/gpu:0'):
m, meval = self._build_models()
# Figure out what epoch we are on
starting_epoch = self._calc_starting_epoch(m)
# Run the validation error right at the beginning
valid_accuracy = self.eval_child_model(
meval, self.data_loader, 'val')
tf.logging.info('Before Training Epoch: {} Val Acc: {}'.format(
starting_epoch, valid_accuracy))
training_accuracy = None
for curr_epoch in xrange(starting_epoch, hparams.num_epochs):
# Run one training epoch
training_accuracy = self._run_training_loop(m, curr_epoch)
valid_accuracy = self.eval_child_model(
meval, self.data_loader, 'val')
tf.logging.info('Epoch: {} Valid Acc: {}'.format(
curr_epoch, valid_accuracy))
valid_accuracy, test_accuracy = self._compute_final_accuracies(
meval)
tf.logging.info(
'Train Acc: {} Valid Acc: {} Test Acc: {}'.format(
training_accuracy, valid_accuracy, test_accuracy))
@property
def saver(self):
return self._saver
@property
def session(self):
return self._session
@property
def num_trainable_params(self):
return self._num_trainable_params
def main(_):
if FLAGS.dataset not in ['cifar10', 'cifar100']:
raise ValueError('Invalid dataset: %s' % FLAGS.dataset)
hparams = tf.contrib.training.HParams(
train_size=50000,
validation_size=0,
eval_test=1,
dataset=FLAGS.dataset,
data_path=FLAGS.data_path,
batch_size=128,
gradient_clipping_by_global_norm=5.0)
if FLAGS.model_name == 'wrn':
hparams.add_hparam('model_name', 'wrn')
hparams.add_hparam('num_epochs', 200)
hparams.add_hparam('wrn_size', 160)
hparams.add_hparam('lr', 0.1)
hparams.add_hparam('weight_decay_rate', 5e-4)
elif FLAGS.model_name == 'shake_shake_32':
hparams.add_hparam('model_name', 'shake_shake')
hparams.add_hparam('num_epochs', 1800)
hparams.add_hparam('shake_shake_widen_factor', 2)
hparams.add_hparam('lr', 0.01)
hparams.add_hparam('weight_decay_rate', 0.001)
elif FLAGS.model_name == 'shake_shake_96':
hparams.add_hparam('model_name', 'shake_shake')
hparams.add_hparam('num_epochs', 1800)
hparams.add_hparam('shake_shake_widen_factor', 6)
hparams.add_hparam('lr', 0.01)
hparams.add_hparam('weight_decay_rate', 0.001)
elif FLAGS.model_name == 'shake_shake_112':
hparams.add_hparam('model_name', 'shake_shake')
hparams.add_hparam('num_epochs', 1800)
hparams.add_hparam('shake_shake_widen_factor', 7)
hparams.add_hparam('lr', 0.01)
hparams.add_hparam('weight_decay_rate', 0.001)
elif FLAGS.model_name == 'pyramid_net':
hparams.add_hparam('model_name', 'pyramid_net')
hparams.add_hparam('num_epochs', 1800)
hparams.add_hparam('lr', 0.05)
hparams.add_hparam('weight_decay_rate', 5e-5)
hparams.batch_size = 64
else:
raise ValueError('Not Valid Model Name: %s' % FLAGS.model_name)
cifar_trainer = CifarModelTrainer(hparams)
cifar_trainer.run_model()
if __name__ == '__main__':
tf.logging.set_verbosity(tf.logging.INFO)
tf.app.run()
|