File size: 18,750 Bytes
18ddfe2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
# Copyright 2018 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

# pylint: disable=line-too-long
# pyformat: disable
"""Train and eval for supervised navigation training.

For training:
python train_supervised_active_vision.py \
  --mode='train' \
  --logdir=$logdir/checkin_log_det/ \
  --modality_types='det' \
  --batch_size=8 \
  --train_iters=200000 \
  --lstm_cell_size=2048 \
  --policy_fc_size=2048 \
  --sequence_length=20 \
  --max_eval_episode_length=100 \
  --test_iters=194 \
  --gin_config=envs/configs/active_vision_config.gin \
  --gin_params='ActiveVisionDatasetEnv.dataset_root="$datadir"' \
  --logtostderr

For testing:
python train_supervised_active_vision.py
  --mode='eval' \
  --logdir=$logdir/checkin_log_det/ \
  --modality_types='det' \
  --batch_size=8 \
  --train_iters=200000 \
  --lstm_cell_size=2048 \
  --policy_fc_size=2048 \
  --sequence_length=20 \
  --max_eval_episode_length=100 \
  --test_iters=194 \
  --gin_config=envs/configs/active_vision_config.gin \
  --gin_params='ActiveVisionDatasetEnv.dataset_root="$datadir"' \
  --logtostderr
"""

import collections
import os
import time
from absl import app
from absl import flags
from absl import logging
import networkx as nx
import numpy as np
import tensorflow as tf
import gin
import embedders
import policies
import tasks
from envs import active_vision_dataset_env
from envs import task_env

slim = tf.contrib.slim

flags.DEFINE_string('logdir', '',
                    'Path to a directory to write summaries and checkpoints')
# Parameters controlling the training setup. In general one would not need to
# modify them.
flags.DEFINE_string('master', 'local',
                    'BNS name of the TensorFlow master, or local.')
flags.DEFINE_integer('task_id', 0,
                     'Task id of the replica running the training.')
flags.DEFINE_integer('ps_tasks', 0,
                     'Number of tasks in the ps job. If 0 no ps job is used.')

flags.DEFINE_integer('decay_steps', 1000,
                     'Number of steps for exponential decay.')
flags.DEFINE_float('learning_rate', 0.0001, 'Learning rate.')
flags.DEFINE_integer('batch_size', 8, 'Batch size.')
flags.DEFINE_integer('sequence_length', 20, 'sequence length')
flags.DEFINE_integer('train_iters', 200000, 'number of training iterations.')
flags.DEFINE_integer('save_summaries_secs', 300,
                     'number of seconds between saving summaries')
flags.DEFINE_integer('save_interval_secs', 300,
                     'numer of seconds between saving variables')
flags.DEFINE_integer('log_every_n_steps', 20, 'number of steps between logging')
flags.DEFINE_string('modality_types', '',
                    'modality names in _ separated format')
flags.DEFINE_string('conv_window_sizes', '8_4_3',
                    'conv window size in separated by _')
flags.DEFINE_string('conv_strides', '4_2_1', '')
flags.DEFINE_string('conv_channels', '8_16_16', '')
flags.DEFINE_integer('embedding_fc_size', 128,
                     'size of embedding for each modality')
flags.DEFINE_integer('obs_resolution', 64,
                     'resolution of the input observations')
flags.DEFINE_integer('lstm_cell_size', 2048, 'size of lstm cell size')
flags.DEFINE_integer('policy_fc_size', 2048,
                     'size of fully connected layers for policy part')
flags.DEFINE_float('weight_decay', 0.0002, 'weight decay')
flags.DEFINE_integer('goal_category_count', 5, 'number of goal categories')
flags.DEFINE_integer('action_size', 7, 'number of possible actions')
flags.DEFINE_integer('max_eval_episode_length', 100,
                     'maximum sequence length for evaluation.')
flags.DEFINE_enum('mode', 'train', ['train', 'eval'],
                  'indicates whether it is in training or evaluation')
flags.DEFINE_integer('test_iters', 194,
                     'number of iterations that the eval needs to be run')
flags.DEFINE_multi_string('gin_config', [],
                          'List of paths to a gin config files for the env.')
flags.DEFINE_multi_string('gin_params', [],
                          'Newline separated list of Gin parameter bindings.')
flags.DEFINE_string(
    'resnet50_path', './resnet_v2_50_checkpoint/resnet_v2_50.ckpt', 'path to resnet50'
    'checkpoint')
flags.DEFINE_bool('freeze_resnet_weights', True, '')
flags.DEFINE_string(
    'eval_init_points_file_name', '',
    'Name of the file that containts the initial locations and'
    'worlds for each evalution point')

FLAGS = flags.FLAGS
TRAIN_WORLDS = [
    'Home_001_1', 'Home_001_2', 'Home_002_1', 'Home_003_1', 'Home_003_2',
    'Home_004_1', 'Home_004_2', 'Home_005_1', 'Home_005_2', 'Home_006_1',
    'Home_010_1'
]

TEST_WORLDS = ['Home_011_1', 'Home_013_1', 'Home_016_1']


def create_modality_types():
  """Parses the modality_types and returns a list of task_env.ModalityType."""
  if not FLAGS.modality_types:
    raise ValueError('there needs to be at least one modality type')
  modality_types = FLAGS.modality_types.split('_')
  for x in modality_types:
    if x not in ['image', 'sseg', 'det', 'depth']:
      raise ValueError('invalid modality type: {}'.format(x))

  conversion_dict = {
      'image': task_env.ModalityTypes.IMAGE,
      'sseg': task_env.ModalityTypes.SEMANTIC_SEGMENTATION,
      'depth': task_env.ModalityTypes.DEPTH,
      'det': task_env.ModalityTypes.OBJECT_DETECTION,
  }
  return [conversion_dict[k] for k in modality_types]


def create_task_io_config(
    modality_types,
    goal_category_count,
    action_size,
    sequence_length,
):
  """Generates task io config."""
  shape_prefix = [sequence_length, FLAGS.obs_resolution, FLAGS.obs_resolution]
  shapes = {
      task_env.ModalityTypes.IMAGE: [sequence_length, 224, 224, 3],
      task_env.ModalityTypes.DEPTH: shape_prefix + [
          2,
      ],
      task_env.ModalityTypes.SEMANTIC_SEGMENTATION: shape_prefix + [
          1,
      ],
      task_env.ModalityTypes.OBJECT_DETECTION: shape_prefix + [
          90,
      ]
  }
  types = {k: tf.float32 for k in shapes}
  types[task_env.ModalityTypes.IMAGE] = tf.uint8
  inputs = collections.OrderedDict(
      [[mtype, (types[mtype], shapes[mtype])] for mtype in modality_types])
  inputs[task_env.ModalityTypes.GOAL] = (tf.float32,
                                         [sequence_length, goal_category_count])
  inputs[task_env.ModalityTypes.PREV_ACTION] = (tf.float32, [
      sequence_length, action_size + 1
  ])
  print inputs
  return tasks.UnrolledTaskIOConfig(
      inputs=inputs,
      output=(tf.float32, [sequence_length, action_size]),
      query=None)


def map_to_embedder(modality_type):
  """Maps modality_type to its corresponding embedder."""
  if modality_type == task_env.ModalityTypes.PREV_ACTION:
    return None
  if modality_type == task_env.ModalityTypes.GOAL:
    return embedders.IdentityEmbedder()
  if modality_type == task_env.ModalityTypes.IMAGE:
    return embedders.ResNet50Embedder()
  conv_window_sizes = [int(x) for x in FLAGS.conv_window_sizes.split('_')]
  conv_channels = [int(x) for x in FLAGS.conv_channels.split('_')]
  conv_strides = [int(x) for x in FLAGS.conv_strides.split('_')]
  params = tf.contrib.training.HParams(
      to_one_hot=modality_type == task_env.ModalityTypes.SEMANTIC_SEGMENTATION,
      one_hot_length=10,
      conv_sizes=conv_window_sizes,
      conv_strides=conv_strides,
      conv_channels=conv_channels,
      embedding_size=FLAGS.embedding_fc_size,
      weight_decay_rate=FLAGS.weight_decay,
  )
  return embedders.SmallNetworkEmbedder(params)


def create_train_and_init_ops(policy, task):
  """Creates training ops given the arguments.

  Args:
    policy: the policy for the task.
    task: the task instance.

  Returns:
    train_op: the op that needs to be runned at each step.
    summaries_op: the summary op that is executed.
    init_fn: the op that initializes the variables if there is no previous
      checkpoint. If Resnet50 is not used in the model it is None, otherwise
      it reads the weights from FLAGS.resnet50_path and sets the init_fn
      to the op that initializes the ResNet50 with the pre-trained weights.
  """
  assert isinstance(task, tasks.GotoStaticXNoExplorationTask)
  assert isinstance(policy, policies.Policy)

  inputs, _, gt_outputs, masks = task.tf_episode_batch(FLAGS.batch_size)
  outputs, _ = policy.build(inputs, None)
  loss = task.target_loss(gt_outputs, outputs, masks)

  init_fn = None

  # If resnet is added to the graph, init_fn should initialize resnet weights
  # if there is no previous checkpoint.
  variables_assign_dict = {}
  vars_list = []
  for v in slim.get_model_variables():
    if v.name.find('resnet') >= 0:
      if not FLAGS.freeze_resnet_weights:
        vars_list.append(v)
      variables_assign_dict[v.name[v.name.find('resnet'):-2]] = v
    else:
      vars_list.append(v)
  
  global_step = tf.train.get_or_create_global_step()
  learning_rate = tf.train.exponential_decay(
      FLAGS.learning_rate,
      global_step,
      decay_steps=FLAGS.decay_steps,
      decay_rate=0.98,
      staircase=True)
  optimizer = tf.train.AdamOptimizer(learning_rate)
  train_op = slim.learning.create_train_op(
      loss,
      optimizer,
      global_step=global_step,
      variables_to_train=vars_list,
  )

  if variables_assign_dict:
    init_fn = slim.assign_from_checkpoint_fn(
        FLAGS.resnet50_path,
        variables_assign_dict,
        ignore_missing_vars=False)
  scalar_summaries = {}
  scalar_summaries['LR'] = learning_rate
  scalar_summaries['loss'] = loss

  for name, summary in scalar_summaries.iteritems():
    tf.summary.scalar(name, summary)
 
  return train_op, init_fn


def create_eval_ops(policy, config, possible_targets):
  """Creates the necessary ops for evaluation."""
  inputs_feed = collections.OrderedDict([[
      mtype,
      tf.placeholder(config.inputs[mtype].type,
                     [1] + config.inputs[mtype].shape)
  ] for mtype in config.inputs])
  inputs_feed[task_env.ModalityTypes.PREV_ACTION] = tf.placeholder(
      tf.float32, [1, 1] + [
          config.output.shape[-1] + 1,
      ])
  prev_state_feed = [
      tf.placeholder(
          tf.float32, [1, FLAGS.lstm_cell_size], name='prev_state_{}'.format(i))
      for i in range(2)
  ]
  policy_outputs = policy.build(inputs_feed, prev_state_feed)
  summary_feed = {}
  for c in possible_targets + ['mean']:
    summary_feed[c] = tf.placeholder(
        tf.float32, [], name='eval_in_range_{}_input'.format(c))
    tf.summary.scalar('eval_in_range_{}'.format(c), summary_feed[c])

  return inputs_feed, prev_state_feed, policy_outputs, (tf.summary.merge_all(),
                                                        summary_feed)


def unroll_policy_for_eval(
    sess,
    env,
    inputs_feed,
    prev_state_feed,
    policy_outputs,
    number_of_steps,
    output_folder,
):
  """unrolls the policy for testing.

  Args:
    sess: tf.Session
    env: The environment.
    inputs_feed: dictionary of placeholder for the input modalities.
    prev_state_feed: placeholder for the input to the prev_state of the model.
    policy_outputs: tensor that contains outputs of the policy.
    number_of_steps: maximum number of unrolling steps.
    output_folder: output_folder where the function writes a dictionary of
      detailed information about the path. The dictionary keys are 'states' and
      'distance'. The value for 'states' is the list of states that the agent
      goes along the path. The value for 'distance' contains the length of
      shortest path to the goal at each step.

  Returns:
    states: list of states along the path.
    distance: list of distances along the path.
  """
  prev_state = [
      np.zeros((1, FLAGS.lstm_cell_size), dtype=np.float32) for _ in range(2)
  ]
  prev_action = np.zeros((1, 1, FLAGS.action_size + 1), dtype=np.float32)
  obs = env.reset()
  distances_to_goal = []
  states = []
  unique_id = '{}_{}'.format(env.cur_image_id(), env.goal_string)
  for _ in range(number_of_steps):
    distances_to_goal.append(
        np.min([
            len(
                nx.shortest_path(env.graph, env.pose_to_vertex(env.state()),
                                 env.pose_to_vertex(target_view)))
            for target_view in env.targets()
        ]))
    states.append(env.state())
    feed_dict = {inputs_feed[mtype]: [[obs[mtype]]] for mtype in inputs_feed}
    feed_dict[prev_state_feed[0]] = prev_state[0]
    feed_dict[prev_state_feed[1]] = prev_state[1]
    action_values, prev_state = sess.run(policy_outputs, feed_dict=feed_dict)
    chosen_action = np.argmax(action_values[0])
    obs, _, done, info = env.step(np.int32(chosen_action))
    prev_action[0][0][chosen_action] = 1.
    prev_action[0][0][-1] = float(info['success'])
    # If the agent chooses action stop or the number of steps exceeeded
    # env._episode_length.
    if done:
      break

  # logging.info('distance = %d, id = %s, #steps = %d', distances_to_goal[-1],
  output_path = os.path.join(output_folder, unique_id + '.npy')
  with tf.gfile.Open(output_path, 'w') as f:
    print 'saving path information to {}'.format(output_path)
    np.save(f, {'states': states, 'distance': distances_to_goal})
  return states, distances_to_goal


def init(sequence_length, eval_init_points_file_name, worlds):
  """Initializes the common operations between train and test."""
  modality_types = create_modality_types()
  logging.info('modality types: %r', modality_types)
  # negative reward_goal_range prevents the env from terminating early when the
  # agent is close to the goal. The policy should keep the agent until the end
  # of the 100 steps either through chosing stop action or oscilating around
  # the target.

  env = active_vision_dataset_env.ActiveVisionDatasetEnv(
      modality_types=modality_types +
      [task_env.ModalityTypes.GOAL, task_env.ModalityTypes.PREV_ACTION],
      reward_goal_range=-1,
      eval_init_points_file_name=eval_init_points_file_name,
      worlds=worlds,
      output_size=FLAGS.obs_resolution,
  )

  config = create_task_io_config(
      modality_types=modality_types,
      goal_category_count=FLAGS.goal_category_count,
      action_size=FLAGS.action_size,
      sequence_length=sequence_length,
  )
  task = tasks.GotoStaticXNoExplorationTask(env=env, config=config)
  embedders_dict = {mtype: map_to_embedder(mtype) for mtype in config.inputs}
  policy_params = tf.contrib.training.HParams(
      lstm_state_size=FLAGS.lstm_cell_size,
      fc_channels=FLAGS.policy_fc_size,
      weight_decay=FLAGS.weight_decay,
      target_embedding_size=FLAGS.embedding_fc_size,
  )
  policy = policies.LSTMPolicy(
      modality_names=config.inputs.keys(),
      embedders_dict=embedders_dict,
      action_size=FLAGS.action_size,
      params=policy_params,
      max_episode_length=sequence_length)
  return env, config, task, policy


def test():
  """Contains all the operations for testing policies."""
  env, config, _, policy = init(1, 'all_init_configs', TEST_WORLDS)
  inputs_feed, prev_state_feed, policy_outputs, summary_op = create_eval_ops(
      policy, config, env.possible_targets)
  sv = tf.train.Supervisor(logdir=FLAGS.logdir)
  prev_checkpoint = None
  with sv.managed_session(
      start_standard_services=False,
      config=tf.ConfigProto(allow_soft_placement=True)) as sess:
    while not sv.should_stop():
      while True:
        new_checkpoint = tf.train.latest_checkpoint(FLAGS.logdir)
        print 'new_checkpoint ', new_checkpoint
        if not new_checkpoint:
          time.sleep(1)
          continue
        if prev_checkpoint is None:
          prev_checkpoint = new_checkpoint
          break
        if prev_checkpoint != new_checkpoint:
          prev_checkpoint = new_checkpoint
          break
        else:  # if prev_checkpoint == new_checkpoint, we have to wait more.
          time.sleep(1)

      checkpoint_step = int(new_checkpoint[new_checkpoint.rfind('-') + 1:])
      sv.saver.restore(sess, new_checkpoint)
      print '--------------------'
      print 'evaluating checkpoint {}'.format(new_checkpoint)
      folder_path = os.path.join(FLAGS.logdir, 'evals', str(checkpoint_step))
      if not tf.gfile.Exists(folder_path):
        tf.gfile.MakeDirs(folder_path)
      eval_stats = {c: [] for c in env.possible_targets}
      for test_iter in range(FLAGS.test_iters):
        print 'evaluating {} of {}'.format(test_iter, FLAGS.test_iters)
        _, distance_to_goal = unroll_policy_for_eval(
            sess,
            env,
            inputs_feed,
            prev_state_feed,
            policy_outputs,
            FLAGS.max_eval_episode_length,
            folder_path,
        )
        print 'goal = {}'.format(env.goal_string)
        eval_stats[env.goal_string].append(float(distance_to_goal[-1] <= 7))
      eval_stats = {k: np.mean(v) for k, v in eval_stats.iteritems()}
      eval_stats['mean'] = np.mean(eval_stats.values())
      print eval_stats
      feed_dict = {summary_op[1][c]: eval_stats[c] for c in eval_stats}
      summary_str = sess.run(summary_op[0], feed_dict=feed_dict)
      writer = sv.summary_writer
      writer.add_summary(summary_str, checkpoint_step)
      writer.flush()


def train():
  _, _, task, policy = init(FLAGS.sequence_length, None, TRAIN_WORLDS)
  print(FLAGS.save_summaries_secs)
  print(FLAGS.save_interval_secs)
  print(FLAGS.logdir)

  with tf.device(
      tf.train.replica_device_setter(ps_tasks=FLAGS.ps_tasks, merge_devices=True)):
    train_op, init_fn = create_train_and_init_ops(policy=policy, task=task)
    print(FLAGS.logdir)
    slim.learning.train(
        train_op=train_op,
        init_fn=init_fn,
        logdir=FLAGS.logdir,
        is_chief=FLAGS.task_id == 0,
        number_of_steps=FLAGS.train_iters,
        save_summaries_secs=FLAGS.save_summaries_secs,
        save_interval_secs=FLAGS.save_interval_secs,
        session_config=tf.ConfigProto(allow_soft_placement=True),
    )


def main(_):
  gin.parse_config_files_and_bindings(FLAGS.gin_config, FLAGS.gin_params)
  if FLAGS.mode == 'train':
    train()
  else:
    test()


if __name__ == '__main__':
  app.run(main)