Spaces:
Running
Running
File size: 1,738 Bytes
c2ba4d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
#### \[EN\] Upload guide (`jsonl`)
**Basic Requirements**
* Upload one `jsonl` file per model (e.g., five files to compare five LLMs)
* ⚠️ Important: All `jsonl` files must have the same number of rows
* ⚠️ Important: The `model_id` field must be unique within and across all files
**Required Fields**
* Per Model Fields
* `model_id`: Unique identifier for the model (recommendation: keep it short)
* `generated`: The LLM's response to the test instruction
* Required only for Translation (`translation_pair` prompt need those. See `streamlit_app_local/user_submit/mt/llama5.jsonl`)
* `source_lang`: input language (e.g. Korean, KR, kor, ...)
* `target_lang`: output language (e.g. English, EN, ...)
* Common Fields (Must be identical across all files)
* `instruction`: The input prompt or test instruction given to the model
* `task`: Category label used to group results (useful when using different evaluation prompts per task)
**Example Format**
```python
# model1.jsonl
{"model_id": "model1", "task": "directions", "instruction": "Where should I go?", "generated": "Over there"}
{"model_id": "model1", "task": "arithmetic", "instruction": "1+1", "generated": "2"}
# model2.jsonl
{"model_id": "model2", "task": "directions", "instruction": "Where should I go?", "generated": "Head north"}
{"model_id": "model2", "task": "arithmetic", "instruction": "1+1", "generated": "3"}
...
..
.
```
**Use Case Example**
If you want to compare different prompting strategies for the same model:
* Use the same `instruction` across files (using unified test scenarios).
* `generated` responses of each prompting strategy will vary across the files.
* Use descriptive `model_id` values like "prompt1", "prompt2", etc.
|