File size: 9,163 Bytes
d1b91e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
from torch import nn
import torch

from modules.commons.layers import LayerNorm


class ConvolutionModule(nn.Module):
    """ConvolutionModule in Conformer model.
    Args:
        channels (int): The number of channels of conv layers.
        kernel_size (int): Kernerl size of conv layers.
    """

    def __init__(self, channels, kernel_size, activation=nn.ReLU(), bias=True):
        """Construct an ConvolutionModule object."""
        super(ConvolutionModule, self).__init__()
        # kernerl_size should be a odd number for 'SAME' padding
        assert (kernel_size - 1) % 2 == 0

        self.pointwise_conv1 = nn.Conv1d(
            channels,
            2 * channels,
            kernel_size=1,
            stride=1,
            padding=0,
            bias=bias,
        )
        self.depthwise_conv = nn.Conv1d(
            channels,
            channels,
            kernel_size,
            stride=1,
            padding=(kernel_size - 1) // 2,
            groups=channels,
            bias=bias,
        )
        self.norm = nn.BatchNorm1d(channels)
        self.pointwise_conv2 = nn.Conv1d(
            channels,
            channels,
            kernel_size=1,
            stride=1,
            padding=0,
            bias=bias,
        )
        self.activation = activation

    def forward(self, x):
        """Compute convolution module.
        Args:
            x (torch.Tensor): Input tensor (#batch, time, channels).
        Returns:
            torch.Tensor: Output tensor (#batch, time, channels).
        """
        # exchange the temporal dimension and the feature dimension
        x = x.transpose(1, 2)

        # GLU mechanism
        x = self.pointwise_conv1(x)  # (batch, 2*channel, dim)
        x = nn.functional.glu(x, dim=1)  # (batch, channel, dim)

        # 1D Depthwise Conv
        x = self.depthwise_conv(x)
        x = self.activation(self.norm(x))

        x = self.pointwise_conv2(x)

        return x.transpose(1, 2)


class MultiLayeredConv1d(torch.nn.Module):
    """Multi-layered conv1d for Transformer block.
    This is a module of multi-leyered conv1d designed
    to replace positionwise feed-forward network
    in Transforner block, which is introduced in
    `FastSpeech: Fast, Robust and Controllable Text to Speech`_.
    .. _`FastSpeech: Fast, Robust and Controllable Text to Speech`:
        https://arxiv.org/pdf/1905.09263.pdf
    """

    def __init__(self, in_chans, hidden_chans, kernel_size, dropout_rate):
        """Initialize MultiLayeredConv1d module.
        Args:
            in_chans (int): Number of input channels.
            hidden_chans (int): Number of hidden channels.
            kernel_size (int): Kernel size of conv1d.
            dropout_rate (float): Dropout rate.
        """
        super(MultiLayeredConv1d, self).__init__()
        self.w_1 = torch.nn.Conv1d(
            in_chans,
            hidden_chans,
            kernel_size,
            stride=1,
            padding=(kernel_size - 1) // 2,
        )
        self.w_2 = torch.nn.Conv1d(
            hidden_chans,
            in_chans,
            kernel_size,
            stride=1,
            padding=(kernel_size - 1) // 2,
        )
        self.dropout = torch.nn.Dropout(dropout_rate)

    def forward(self, x):
        """Calculate forward propagation.
        Args:
            x (torch.Tensor): Batch of input tensors (B, T, in_chans).
        Returns:
            torch.Tensor: Batch of output tensors (B, T, hidden_chans).
        """
        x = torch.relu(self.w_1(x.transpose(-1, 1))).transpose(-1, 1)
        return self.w_2(self.dropout(x).transpose(-1, 1)).transpose(-1, 1)


class Swish(torch.nn.Module):
    """Construct an Swish object."""

    def forward(self, x):
        """Return Swich activation function."""
        return x * torch.sigmoid(x)


class EncoderLayer(nn.Module):
    """Encoder layer module.
    Args:
        size (int): Input dimension.
        self_attn (torch.nn.Module): Self-attention module instance.
            `MultiHeadedAttention` or `RelPositionMultiHeadedAttention` instance
            can be used as the argument.
        feed_forward (torch.nn.Module): Feed-forward module instance.
            `PositionwiseFeedForward`, `MultiLayeredConv1d`, or `Conv1dLinear` instance
            can be used as the argument.
        feed_forward_macaron (torch.nn.Module): Additional feed-forward module instance.
            `PositionwiseFeedForward`, `MultiLayeredConv1d`, or `Conv1dLinear` instance
            can be used as the argument.
        conv_module (torch.nn.Module): Convolution module instance.
            `ConvlutionModule` instance can be used as the argument.
        dropout_rate (float): Dropout rate.
        normalize_before (bool): Whether to use layer_norm before the first block.
        concat_after (bool): Whether to concat attention layer's input and output.
            if True, additional linear will be applied.
            i.e. x -> x + linear(concat(x, att(x)))
            if False, no additional linear will be applied. i.e. x -> x + att(x)
    """

    def __init__(
            self,
            size,
            self_attn,
            feed_forward,
            feed_forward_macaron,
            conv_module,
            dropout_rate,
            normalize_before=True,
            concat_after=False,
    ):
        """Construct an EncoderLayer object."""
        super(EncoderLayer, self).__init__()
        self.self_attn = self_attn
        self.feed_forward = feed_forward
        self.feed_forward_macaron = feed_forward_macaron
        self.conv_module = conv_module
        self.norm_ff = LayerNorm(size)  # for the FNN module
        self.norm_mha = LayerNorm(size)  # for the MHA module
        if feed_forward_macaron is not None:
            self.norm_ff_macaron = LayerNorm(size)
            self.ff_scale = 0.5
        else:
            self.ff_scale = 1.0
        if self.conv_module is not None:
            self.norm_conv = LayerNorm(size)  # for the CNN module
            self.norm_final = LayerNorm(size)  # for the final output of the block
        self.dropout = nn.Dropout(dropout_rate)
        self.size = size
        self.normalize_before = normalize_before
        self.concat_after = concat_after
        if self.concat_after:
            self.concat_linear = nn.Linear(size + size, size)

    def forward(self, x_input, mask, cache=None):
        """Compute encoded features.
        Args:
            x_input (Union[Tuple, torch.Tensor]): Input tensor w/ or w/o pos emb.
                - w/ pos emb: Tuple of tensors [(#batch, time, size), (1, time, size)].
                - w/o pos emb: Tensor (#batch, time, size).
            mask (torch.Tensor): Mask tensor for the input (#batch, time).
            cache (torch.Tensor): Cache tensor of the input (#batch, time - 1, size).
        Returns:
            torch.Tensor: Output tensor (#batch, time, size).
            torch.Tensor: Mask tensor (#batch, time).
        """
        if isinstance(x_input, tuple):
            x, pos_emb = x_input[0], x_input[1]
        else:
            x, pos_emb = x_input, None

        # whether to use macaron style
        if self.feed_forward_macaron is not None:
            residual = x
            if self.normalize_before:
                x = self.norm_ff_macaron(x)
            x = residual + self.ff_scale * self.dropout(self.feed_forward_macaron(x))
            if not self.normalize_before:
                x = self.norm_ff_macaron(x)

        # multi-headed self-attention module
        residual = x
        if self.normalize_before:
            x = self.norm_mha(x)

        if cache is None:
            x_q = x
        else:
            assert cache.shape == (x.shape[0], x.shape[1] - 1, self.size)
            x_q = x[:, -1:, :]
            residual = residual[:, -1:, :]
            mask = None if mask is None else mask[:, -1:, :]

        if pos_emb is not None:
            x_att = self.self_attn(x_q, x, x, pos_emb, mask)
        else:
            x_att = self.self_attn(x_q, x, x, mask)

        if self.concat_after:
            x_concat = torch.cat((x, x_att), dim=-1)
            x = residual + self.concat_linear(x_concat)
        else:
            x = residual + self.dropout(x_att)
        if not self.normalize_before:
            x = self.norm_mha(x)

        # convolution module
        if self.conv_module is not None:
            residual = x
            if self.normalize_before:
                x = self.norm_conv(x)
            x = residual + self.dropout(self.conv_module(x))
            if not self.normalize_before:
                x = self.norm_conv(x)

        # feed forward module
        residual = x
        if self.normalize_before:
            x = self.norm_ff(x)
        x = residual + self.ff_scale * self.dropout(self.feed_forward(x))
        if not self.normalize_before:
            x = self.norm_ff(x)

        if self.conv_module is not None:
            x = self.norm_final(x)

        if cache is not None:
            x = torch.cat([cache, x], dim=1)

        if pos_emb is not None:
            return (x, pos_emb), mask

        return x, mask