File size: 5,540 Bytes
d1b91e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import numpy as np
import torch
import torch.distributed as dist
from torch.utils.data import DistributedSampler
from utils.commons.dataset_utils import BaseDataset, collate_1d, collate_2d
from utils.commons.hparams import hparams
from utils.commons.indexed_datasets import IndexedDataset


class EndlessDistributedSampler(DistributedSampler):
    def __init__(self, dataset, num_replicas=None, rank=None, shuffle=True):
        if num_replicas is None:
            if not dist.is_available():
                raise RuntimeError("Requires distributed package to be available")
            num_replicas = dist.get_world_size()
        if rank is None:
            if not dist.is_available():
                raise RuntimeError("Requires distributed package to be available")
            rank = dist.get_rank()
        self.dataset = dataset
        self.num_replicas = num_replicas
        self.rank = rank
        self.epoch = 0
        self.shuffle = shuffle

        g = torch.Generator()
        g.manual_seed(self.epoch)
        if self.shuffle:
            indices = [i for _ in range(1000) for i in torch.randperm(
                len(self.dataset), generator=g).tolist()]
        else:
            indices = [i for _ in range(1000) for i in list(range(len(self.dataset)))]
        indices = indices[:len(indices) // self.num_replicas * self.num_replicas]
        indices = indices[self.rank::self.num_replicas]
        self.indices = indices

    def __iter__(self):
        return iter(self.indices)

    def __len__(self):
        return len(self.indices)


class VocoderDataset(BaseDataset):
    def __init__(self, prefix, shuffle=False):
        super().__init__(shuffle)
        self.hparams = hparams
        self.prefix = prefix
        self.data_dir = hparams['binary_data_dir']
        self.is_infer = prefix == 'test'
        self.batch_max_frames = 0 if self.is_infer else hparams['max_samples'] // hparams['hop_size']
        self.hop_size = hparams['hop_size']
        self.indexed_ds = None
        self.sizes = np.load(f'{self.data_dir}/{self.prefix}_lengths.npy')
        self.avail_idxs = [idx for idx, s in enumerate(self.sizes) if s > self.batch_max_frames]
        print(f"| {len(self.sizes) - len(self.avail_idxs)} short items are skipped in {prefix} set.")
        self.sizes = [s for idx, s in enumerate(self.sizes) if s > self.batch_max_frames]

    def _get_item(self, index):
        if self.indexed_ds is None:
            self.indexed_ds = IndexedDataset(f'{self.data_dir}/{self.prefix}')
        item = self.indexed_ds[index]
        return item

    def __getitem__(self, index):
        index = self.avail_idxs[index]
        item = self._get_item(index)
        sample = {
            "id": index,
            "item_name": item['item_name'],
            "mel": torch.FloatTensor(item['mel']),
            "wav": torch.FloatTensor(item['wav'].astype(np.float32)),
            "pitch": torch.LongTensor(item['pitch']),
            "f0": torch.FloatTensor(item['f0'])
        }
        return sample

    def collater(self, batch):
        if len(batch) == 0:
            return {}

        y_batch, c_batch, p_batch, f0_batch = [], [], [], []
        item_name = []
        for idx in range(len(batch)):
            item_name.append(batch[idx]['item_name'])
            x, c = batch[idx]['wav'], batch[idx]['mel']
            p, f0 = batch[idx]['pitch'], batch[idx]['f0']
            self._assert_ready_for_upsampling(x, c, self.hop_size)
            if len(c) > self.batch_max_frames:
                # randomly pickup with the batch_max_steps length of the part
                batch_max_frames = self.batch_max_frames if self.batch_max_frames != 0 else len(c) - 1
                batch_max_steps = batch_max_frames * self.hop_size
                interval_start = 0
                interval_end = len(c) - batch_max_frames
                start_frame = np.random.randint(interval_start, interval_end)
                start_step = start_frame * self.hop_size
                y = x[start_step: start_step + batch_max_steps]
                c = c[start_frame: start_frame + batch_max_frames]
                p = p[start_frame: start_frame + batch_max_frames]
                f0 = f0[start_frame: start_frame + batch_max_frames]
                self._assert_ready_for_upsampling(y, c, self.hop_size)
            else:
                print(f"Removed short sample from batch (length={len(x)}).")
                continue
            y_batch += [y.reshape(-1, 1)]  # [(T, 1), (T, 1), ...]
            c_batch += [c]  # [(T' C), (T' C), ...]
            p_batch += [p]  # [(T' C), (T' C), ...]
            f0_batch += [f0]  # [(T' C), (T' C), ...]

        # convert each batch to tensor, asuume that each item in batch has the same length
        y_batch = collate_2d(y_batch, 0).transpose(2, 1)  # (B, 1, T)
        c_batch = collate_2d(c_batch, 0).transpose(2, 1)  # (B, C, T')
        p_batch = collate_1d(p_batch, 0)  # (B, T')
        f0_batch = collate_1d(f0_batch, 0)  # (B, T')

        # make input noise signal batch tensor
        z_batch = torch.randn(y_batch.size())  # (B, 1, T)
        return {
            'z': z_batch,
            'mels': c_batch,
            'wavs': y_batch,
            'pitches': p_batch,
            'f0': f0_batch,
            'item_name': item_name
        }

    @staticmethod
    def _assert_ready_for_upsampling(x, c, hop_size):
        """Assert the audio and feature lengths are correctly adjusted for upsamping."""
        assert len(x) == (len(c)) * hop_size