Spaces:
Runtime error
Runtime error
File size: 27,953 Bytes
c80917c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import numpy as np
import time
import os
from collections import defaultdict
import captioning.utils.opts as opts
import captioning.models as models
from captioning.data.pth_loader import CaptionDataset
import captioning.utils.eval_utils as eval_utils
import captioning.utils.misc as utils
from captioning.utils.rewards import init_scorer, get_self_critical_reward
from captioning.modules.loss_wrapper import LossWrapper
import pytorch_lightning as pl
import detectron2.utils.comm as d2comm
from detectron2.utils.env import seed_all_rng
seed_all_rng(1234)
class LitModel(pl.LightningModule):
def __init__(self, opt):
super().__init__()
self.opt = opt
# Intilaize dataset
self.dataset = CaptionDataset(opt)
opt.vocab_size = self.dataset.vocab_size
opt.seq_length = self.dataset.seq_length
self.batch_size = opt.batch_size
# Build model
opt.vocab = self.dataset.get_vocab()
model = models.setup(opt)
# print(model)
del opt.vocab
# wrapper with loss in it.
lw_model = LossWrapper(model, opt)
self.model = model
self.lw_model = lw_model
self.struc_flag = None
self.sc_flag = None
# if self.opt.use_clipscore:
# if self.opt.use_clipscore or os.getenv('EVALUATE', '0') == '1':
# if CLIP-S+Grammar is used in reward -> Launch another CLIP-S where parameter is unchanged
if getattr(self.opt, 'use_grammar', False):
from captioning.utils.clipscore import CLIPScore
self.val_clipscore_model = CLIPScore(
mode=opt.clipscore_mode, use_grammar=False)
for p in self.val_clipscore_model.parameters():
p.requires_grad = False
else:
if self.lw_model.clipscore_model is not None:
self.val_clipscore_model = self.lw_model.clipscore_model
else:
from captioning.utils.clipscore import CLIPScore
self.val_clipscore_model = CLIPScore(
mode=opt.clipscore_mode, use_grammar=False)
for p in self.val_clipscore_model.parameters():
p.requires_grad = False
self.val_clipscore_model.eval()
# BERTSCORE
from bert_score import BERTScorer
self.bert_scorer = BERTScorer(
lang="en",
# rescale_with_baseline=True,
rescale_with_baseline=False,
device='cpu'
)
def forward(self, *args, **kwargs):
"""
I hate this design. Never pretend it as a nn.Module
"""
raise NotImplementedError
def train_dataloader(self):
train_dataset = torch.utils.data.Subset(
self.dataset,
self.dataset.split_ix['train']
)
train_loader = torch.utils.data.DataLoader(
dataset=train_dataset,
batch_size=self.batch_size,
shuffle=True,
num_workers=4,
collate_fn=self.dataset.collate_func
)
return train_loader
def val_dataloader(self, split='val'):
val_dataset = torch.utils.data.Subset(
self.dataset,
self.dataset.split_ix[split]
)
val_loader = torch.utils.data.DataLoader(
val_dataset,
batch_size=self.batch_size,
shuffle=False,
num_workers=4,
drop_last=False,
collate_fn=self.dataset.collate_func
)
return val_loader
def test_dataloader(self):
return self.val_dataloader('test')
def training_step(self, data, batch_idx):
sc_flag, struc_flag = self.sc_flag, self.struc_flag
tmp = [data['fc_feats'], data['att_feats'],
data['labels'], data['masks'], data['att_masks']]
fc_feats, att_feats, labels, masks, att_masks = tmp
if int(os.getenv('M2_cider', '0')) != 0:
data['gts'] = data['rawgts']
if self.opt.use_clipscore:
clip_vis_feats = data['clip_vis_feats']
model_out = self.lw_model(fc_feats, att_feats, labels, masks, att_masks,
data['gts'], torch.arange(0, len(data['gts'])), sc_flag, struc_flag,
clip_vis_feats=clip_vis_feats)
else:
model_out = self.lw_model(fc_feats, att_feats, labels, masks, att_masks,
data['gts'], torch.arange(0, len(data['gts'])), sc_flag, struc_flag)
loss = model_out['loss']
data_time = self.trainer.profiler.recorded_durations["get_train_batch"][-1]
data_time = torch.tensor(data_time)
logger_logs = model_out.copy()
# if struc_flag or sc_flag:
# logger_logs['reward'] = model_out['reward'].mean()
# logger_logs['reward_var'] = model_out['reward'].var(1).mean()
if struc_flag or sc_flag:
logger_logs['reward'] = model_out['reward'].mean()
for k in ['CLIP-S', 'RefCLIP-S', 'CIDEr', 'grammar_reward']:
if k in model_out:
logger_logs[k] = model_out[k]
if struc_flag:
logger_logs['reward_var'] = model_out['reward'].var(1).mean()
logger_logs['scheduled_sampling_prob'] = torch.tensor(
self.model.ss_prob)
# logger_logs['training_loss'] = loss
logger_logs['loss'] = loss
logger_logs['data_time'] = data_time
# UserWarning: The {progress_bar:dict keyword} was deprecated in 0.9.1 and will be removed in 1.0.0
# Please use self.log(...) inside the lightningModule instead.
# # log on a step or aggregate epoch metric to the logger and/or progress bar
# # (inside LightningModule)
# self.log('train_loss', loss, on_step=True, on_epoch=True, prog_bar=True)
# warnings.warn(*args, **kwargs)
# UserWarning: The {log:dict keyword} was deprecated in 0.9.1 and will be removed in 1.0.0
# Please use self.log(...) inside the lightningModule instead.
# output = {
# 'loss': loss,
# 'log': logger_logs,
# 'progress_bar': {'data_time': data_time}
# }
for k, v in logger_logs.items():
if k in ['reward', 'reward_var', 'data_time', 'CLIP-S', 'RefCLIP-S', 'CIDEr', 'grammar_reward']:
self.log('train/'+k, v, prog_bar=True)
else:
self.log('train/'+k, v)
return loss
def validation_step(self, data, batch_idx):
model = self.model
crit = self.lw_model.crit
opt = self.opt
eval_kwargs = {'dataset': opt.input_json}
eval_kwargs.update(vars(opt))
# CLIPScore
use_grammar = getattr(self.opt, 'use_grammar', False)
joint_out = getattr(self.opt, 'joint_out', False)
verbose = eval_kwargs.get('verbose', True)
verbose_beam = eval_kwargs.get('verbose_beam', 0)
verbose_loss = eval_kwargs.get('verbose_loss', 1)
# num_images = eval_kwargs.get('num_images', eval_kwargs.get('val_images_use', -1))
# lang_eval = eval_kwargs.get('language_eval', 0)
dataset = eval_kwargs.get('dataset', 'coco')
beam_size = eval_kwargs.get('beam_size', 1)
sample_n = eval_kwargs.get('sample_n', 1)
remove_bad_endings = eval_kwargs.get('remove_bad_endings', 0)
# Use this nasty way to make other code clean since it's a global configuration
os.environ["REMOVE_BAD_ENDINGS"] = str(remove_bad_endings)
predictions = []
n_predictions = []
loss = torch.tensor(0)
if data.get('labels', None) is not None and verbose_loss:
# forward the model to get loss
tmp = [data['fc_feats'], data['att_feats'],
data['labels'], data['masks'], data['att_masks']]
fc_feats, att_feats, labels, masks, att_masks = tmp
loss = crit(model(fc_feats, att_feats,
labels[..., :-1], att_masks), labels[..., 1:], masks[..., 1:])
# forward the model to also get generated samples for each image
# Only leave one feature for each image, in case duplicate sample
tmp_eval_kwargs = eval_kwargs.copy()
tmp_eval_kwargs.update({'sample_n': 1})
seq, seq_logprobs = model(
fc_feats, att_feats, att_masks, opt=tmp_eval_kwargs, mode='sample')
seq = seq.data
entropy = - (F.softmax(seq_logprobs, dim=2) *
seq_logprobs).sum(2).sum(1) / ((seq > 0).to(seq_logprobs).sum(1)+1)
perplexity = - \
seq_logprobs.gather(2, seq.unsqueeze(2)).squeeze(
2).sum(1) / ((seq > 0).to(seq_logprobs).sum(1)+1)
# Print beam search
if beam_size > 1 and verbose_beam:
for i in range(fc_feats.shape[0]):
print('\n'.join([utils.decode_sequence(model.vocab, _[
'seq'].unsqueeze(0))[0] for _ in model.done_beams[i]]))
print('--' * 10)
sents = utils.decode_sequence(model.vocab, seq)
# if self.opt.use_clipscore or os.getenv('EVALUATE', '0') == '1':
# text_feat = self.lw_model.clipscore_model.text_extract(sents)
text_feat = self.val_clipscore_model.text_extract(sents, proj_norm=False)
text_cont_feat = self.val_clipscore_model.clip_model.text_projection(text_feat)
text_cont_feat = text_cont_feat / text_cont_feat.norm(dim=-1, keepdim=True)
vis_feat = data['clip_vis_feats']
# if self.opt.clipscore_mode == 'clip_s':
# clip_s = self.val_clipscore_model(text_feat=text_cont_feat, img_feat=vis_feat, mode='clip_s')
# elif self.opt.clipscore_mode == 'refclip_s':
clip_s = self.val_clipscore_model(text_feat=text_cont_feat, img_feat=vis_feat, mode='clip_s')
# ref_text = utils.decode_sequence(model.vocab, data['gts'])
gt_indices = torch.arange(0, len(data['gts']))
data_gts = [data['gts'][_] for _ in gt_indices.tolist()]
B = len(data_gts)
gts = []
gts_valid_mask = []
max_n_refs = max([len(_gts) for _gts in data_gts])
for i in range(len(data_gts)):
_gts = utils.decode_sequence(model.vocab, data_gts[i])
# pad references
n_ref = len(_gts)
_gts.extend([''] * (max_n_refs - n_ref))
gts.extend(_gts)
gts_valid_mask.extend([1] * n_ref + [0] * (max_n_refs - n_ref))
assert len(gts) == B * max_n_refs
assert len(gts_valid_mask) == B * max_n_refs
ref_text = gts
ref_text_mask = gts_valid_mask
refclip_s = self.val_clipscore_model(
text_feat=text_cont_feat, img_feat=vis_feat,
ref_text=ref_text, ref_text_mask=ref_text_mask, mode='refclip_s')
# use_grammar = getattr(self.opt, 'use_grammar', False)
# joint_out = getattr(self.opt, 'joint_out', False)
if use_grammar and not joint_out:
with torch.no_grad():
# grammar_logit = self.val_clipscore_model.grammar_score_head(text_feat.view(-1, 512))
grammar_logit = self.lw_model.clipscore_model.grammar_score_head(text_feat.view(-1, 512))
grammar_prob = torch.softmax(grammar_logit, dim=-1)[:, 1]
# BERTScore
if next(self.bert_scorer._model.parameters()).device != self.device:
self.bert_scorer._model.to(self.device)
self.bert_scorer.device = self.device
# [B*K] -> [B, K]
ref_text_per_example = []
for i in range(B):
ref_text_list_example = []
for k in range(max_n_refs):
ref = ref_text[i * max_n_refs + k]
if len(ref) > 0:
ref_text_list_example.append(ref)
# assert len(ref_text_list_example) == max_n_refs
ref_text_per_example.append(ref_text_list_example)
assert len(ref_text_per_example) == B
P, R, F1 = self.bert_scorer.score(
sents,
ref_text_per_example,
)
bertscore_f1 = F1
# print('Example 5:')
# for i in range(5):
# print('Generated:', sents[i])
# print('ref_text:', ref_text_per_example[i])
# print('BERT-Score:', F1[i].item())
for k, sent in enumerate(sents):
entry = {'image_id': data['infos'][k]['id'], 'caption': sent,
'perplexity': perplexity[k].item(), 'entropy': entropy[k].item()}
if self.opt.use_clipscore or os.getenv('EVALUATE', '0') == '1':
# if self.opt.clipscore_mode == 'clip_s':
# entry['clipscore'] = clipscore[k].item()
# entry['CLIP-S'] = clip_s[k].item()
# elif self.opt.clipscore_mode == 'refclip_s':
entry['CLIP-S'] = clip_s[k].item()
entry['RefCLIP-S'] = refclip_s[k].item()
if use_grammar and not joint_out:
entry['grammar_prob'] = grammar_prob[k].item()
# BERT-S
entry['BERT-S'] = bertscore_f1[k].item()
if eval_kwargs.get('dump_path', 0) == 1:
entry['file_name'] = data['infos'][k]['file_path']
predictions.append(entry)
if eval_kwargs.get('dump_images', 0) == 1:
# dump the raw image to vis/ folder
cmd = 'cp "' + os.path.join(eval_kwargs['image_root'], data['infos'][k]['file_path']) + \
'" vis/imgs/img' + \
str(len(predictions)) + '.jpg' # bit gross
print(cmd)
os.system(cmd)
if verbose:
print('image %s: %s' %
(entry['image_id'], entry['caption']))
if sample_n > 1:
eval_utils.eval_split_n(model, n_predictions, [
fc_feats, att_feats, att_masks, data], eval_kwargs)
output = {
# 'val_loss': loss,
'loss': loss,
'predictions': predictions,
'n_predictions': n_predictions,
}
return output
def test_step(self, *args, **kwargs):
return self.validation_step(*args, **kwargs)
def validation_epoch_end(self, outputs, split='val'):
outputs = d2comm.gather(outputs)
# master node
if d2comm.is_main_process():
assert self.trainer.node_rank == 0 and self.trainer.local_rank == 0
outputs = sum(outputs, [])
opt = self.opt
# val_loss_mean = sum([_['val_loss']
# val_loss_mean = sum([_['val_loss'].cpu()
val_loss_mean = sum([_['loss'].cpu()
for _ in outputs]) / len(outputs)
predictions = sum([_['predictions'] for _ in outputs], [])
if len(outputs[0]['n_predictions']) != 0:
n_predictions = sum([_['n_predictions'] for _ in outputs], [])
else:
n_predictions = []
lang_stats = None
if len(n_predictions) > 0 and 'perplexity' in n_predictions[0]:
n_predictions = sorted(
n_predictions, key=lambda x: x['perplexity'])
if not os.path.isdir('eval_results'):
os.mkdir('eval_results')
torch.save((predictions, n_predictions), os.path.join(
'eval_results/', '.saved_pred_' + opt.id + '_' + split + '.pth'))
if opt.language_eval:
lang_stats = eval_utils.language_eval(
opt.input_json, predictions, n_predictions, vars(opt), split)
if opt.reduce_on_plateau:
optimizer = self.trainer.optimizers[0]
if 'CIDEr' in lang_stats:
optimizer.scheduler_step(-lang_stats['CIDEr'])
else:
optimizer.scheduler_step(val_loss_mean)
# out = {
# 'val_loss': val_loss_mean
# }
out = {
'loss': val_loss_mean
}
out.update(lang_stats)
# out['to_monitor'] = lang_stats['CIDEr'] if lang_stats is not None else -val_loss_mean
if self.opt.use_clipscore or os.getenv('EVALUATE', '0') == '1':
# if self.opt.clipscore_mode == 'clip_s':
# out['clipscore'] = sum([p['clipscore'] for p in predictions]) / len(predictions)
# print('CLIPScore', out['clipscore'])
# out['CLIP-S'] = sum([p['CLIP-S'] for p in predictions]) / len(predictions)
# print('CLIP-S', out['CLIP-S'])
# elif self.opt.clipscore_mode == 'refclip_s':
out['CLIP-S'] = sum([p['CLIP-S'] for p in predictions]) / len(predictions)
print('CLIP-S', out['CLIP-S'])
out['RefCLIP-S'] = sum([p['RefCLIP-S'] for p in predictions]) / len(predictions)
print('RefCLIP-S', out['RefCLIP-S'])
if getattr(self.opt, 'use_grammar', False) and not getattr(self.opt, 'joint_out', False):
out['grammar_prob'] = sum([p['grammar_prob'] for p in predictions]) / len(predictions)
print('grammar_prob', out['grammar_prob'])
out['BERT-S'] = sum([p['BERT-S'] for p in predictions]) / len(predictions)
print('BERT-S', out['BERT-S'])
else:
out = {}
out = d2comm.all_gather(out)[0] # Only the one from master node
assert len(out) > 0 # make sure the head has index 0
# must all be tensors
out = {k: torch.tensor(v) if not torch.is_tensor(
v) else v for k, v in out.items()}
# return {
# 'progress_bar': {'val_loss': out['val_loss']},
# 'log': out,
# }
for k, v in out.items():
# if k in ['loss', 'clipscore', 'RefCLIP-S', 'CIDEr']:
# if split != 'test':
# self.log(f'{split}/{k}', v, prog_bar=True)
# elif k == 'to_monitor':
# if split != 'test':
# self.log(f'{split}/{k}', v)
# else:
self.log(f'{split}/{k}', v)
def test_epoch_end(self, outputs):
# out = self.validation_epoch_end(outputs, 'test')
# out['progress_bar'] = {
# # 'test_loss': out['progress_bar']['val_loss']
# 'test_loss': out['progress_bar']['loss']
# }
# out['log']['test_loss'] = out['log']['val_loss']
# del out['log']['val_loss']
# del out['log']['to_monitor']
# out['log'] = {'test_'+k if 'test' not in k else k:v \
# for k,v in out['log'].items()}
# return out
self.validation_epoch_end(outputs, 'test')
def configure_optimizers(self):
opt = self.opt
model = self.model
parameters = [p for p in model.parameters() if p.requires_grad]
if opt.noamopt:
# assert opt.caption_model in ['transformer', 'bert', 'm2transformer'], 'noamopt can only work with transformer'
optimizer = utils.get_std_opt(
model, optim_func=opt.optim, factor=opt.noamopt_factor, warmup=opt.noamopt_warmup)
elif opt.reduce_on_plateau:
# optimizer = utils.build_optimizer(model.parameters(), opt)
optimizer = utils.build_optimizer(parameters, opt)
optimizer = utils.ReduceLROnPlateau(optimizer,
factor=opt.reduce_on_plateau_factor,
patience=opt.reduce_on_plateau_patience)
else:
# optimizer = utils.build_optimizer(model.parameters(), opt)
optimizer = utils.build_optimizer(parameters, opt)
return [optimizer], []
def optimizer_step(self, epoch, batch_idx, optimizer,
optimizer_idx, *args, **kwargs):
# warm up lr
opt = self.opt
iteration = self.trainer.global_step
if opt.use_warmup and (iteration < opt.noamopt_warmup):
opt.current_lr = opt.learning_rate * \
(iteration+1) / opt.noamopt_warmup
utils.set_lr(optimizer, opt.current_lr)
super().optimizer_step(epoch, batch_idx, optimizer,
optimizer_idx, *args, **kwargs)
def state_dict(self):
"""
Save the model state dict as well as opt and vocab
"""
state_dict = self.model.state_dict()
device = next(iter(state_dict.values())).device
assert '_vocab' not in state_dict and '_opt' not in state_dict, 'Just in case'
state_dict.update({
'_vocab': utils.serialize_to_tensor(self.model.vocab).to(device),
'_opt': utils.serialize_to_tensor(self.opt).to(device)
})
return state_dict
def load_state_dict(self, state_dict=None, strict=True):
if '_vocab' in state_dict:
self.model.vocab = utils.deserialize(state_dict['_vocab'])
del state_dict['_vocab']
# elif strict:
# raise KeyError
if '_opt' in state_dict:
saved_model_opt = utils.deserialize(state_dict['_opt'])
del state_dict['_opt']
opt = self.opt
# Make sure the saved opt is compatible with the curren topt
need_be_same = ["caption_model",
"rnn_type", "rnn_size", "num_layers"]
for checkme in need_be_same:
if getattr(saved_model_opt, checkme) in ['updown', 'topdown'] and \
getattr(opt, checkme) in ['updown', 'topdown']:
continue
assert getattr(saved_model_opt, checkme) == getattr(
opt, checkme), "Command line argument and saved model disagree on '%s' " % checkme
# elif strict:
# raise KeyError
self.model.load_state_dict(state_dict, strict)
class OnEpochStartCallback(pl.Callback):
def on_epoch_start(self, trainer, pl_module):
# Update lr/training stage/scheduled sampling prob etc.
opt = pl_module.opt
model = pl_module.model
epoch = trainer.current_epoch
optimizer = trainer.optimizers[0]
if not opt.noamopt and not opt.reduce_on_plateau:
# Assign the learning rate
if epoch > opt.learning_rate_decay_start and opt.learning_rate_decay_start >= 0:
frac = (
epoch - opt.learning_rate_decay_start) // opt.learning_rate_decay_every
decay_factor = opt.learning_rate_decay_rate ** frac
opt.current_lr = opt.learning_rate * decay_factor
else:
opt.current_lr = opt.learning_rate
utils.set_lr(optimizer, opt.current_lr) # set the decayed rate
# Assign the scheduled sampling prob
if epoch > opt.scheduled_sampling_start and opt.scheduled_sampling_start >= 0:
frac = (
epoch - opt.scheduled_sampling_start) // opt.scheduled_sampling_increase_every
opt.ss_prob = min(opt.scheduled_sampling_increase_prob *
frac, opt.scheduled_sampling_max_prob)
model.ss_prob = opt.ss_prob
# If start self critical training
if opt.self_critical_after != -1 and epoch >= opt.self_critical_after:
sc_flag = True
init_scorer(opt.cached_tokens)
else:
sc_flag = False
# If start structure loss training
if opt.structure_after != -1 and epoch >= opt.structure_after:
struc_flag = True
init_scorer(opt.cached_tokens)
else:
struc_flag = False
pl_module.struc_flag = struc_flag
pl_module.sc_flag = sc_flag
class ModelCheckpoint(pl.callbacks.ModelCheckpoint):
def on_keyboard_interrupt(self, trainer, pl_module):
# Save model when keyboard interrupt
filepath = os.path.join(self.dirpath, self.prefix + 'interrupt.ckpt')
self._save_model(filepath)
opt = opts.parse_opt()
checkpoint_callback = ModelCheckpoint(
filepath=opt.checkpoint_path,
# dirpath=opt.checkpoint_path,
save_last=True,
save_top_k=1,
verbose=True,
# monitor='to_monitor',
# monitor='val/to_monitor',
monitor='val/CIDEr',
mode='max',
# prefix=opt.id+'_',
prefix=opt.id,
# filename=f'{opt.id}_',
)
verbose = True
# import torch
# if torch.cuda.current_device() in [0, -1]:
if 'LOCAL_RANK' in os.environ and os.environ['LOCAL_RANK'] != '0':
verbose = False
if verbose:
print(opt)
print("""
val_image_use,
save_checkpoint_very
save_every_epoch,
save_history-ckpt will be ignored.
""")
# Lightning defines batch size as batch size per gpu
assert opt.batch_size % torch.cuda.device_count() == 0
opt.batch_size = opt.batch_size // torch.cuda.device_count()
# If resume from last checkpoint
# if opt.start_from is not None and os.path.isfile(os.path.join(opt.start_from, f'{opt.id}_last.ckpt')):
# resume_from = os.path.join(opt.start_from, f'{opt.id}_last.ckpt')
if opt.start_from is not None:
resume_from = os.path.join(opt.start_from, f'{opt.id}-last.ckpt')
if os.path.isfile(resume_from):
if verbose:
print('Loading checkpoint from', resume_from)
else:
print("Checkpoint not found:", resume_from)
resume_from = None
else:
resume_from = None
from pytorch_lightning.loggers import WandbLogger
wandb_logger = WandbLogger(
project='CLIP-ViL-COCOCaption',
name=opt.id,
)
if verbose:
wandb_logger.experiment.config.update(opt)
from pathlib import Path
import glob
import wandb
# src_dir = Path(__file__).resolve().parent.parent
glob_str = "**/*.py"
base_path = './'
wandb.save(glob_str=glob_str, base_path=base_path)
# code = wandb.Artifact('project-source', type='code')
# for path in glob.glob('**/*.py', recursive=True):
# code.add_file(path, name='source/'+path)
# print(path)
# wandb.run.use_artifact(code)
lit = LitModel(opt)
# warning grad_clip_mode is ignored.
trainer = pl.Trainer(
callbacks=[
OnEpochStartCallback(),
# pl.callbacks.lr_logger.LearningRateLogger()
pl.callbacks.LearningRateMonitor()
],
default_root_dir=opt.checkpoint_path,
resume_from_checkpoint=resume_from,
distributed_backend='ddp',
check_val_every_n_epoch=1,
max_epochs=opt.max_epochs,
gradient_clip_val=opt.grad_clip_value,
gpus=torch.cuda.device_count(),
checkpoint_callback=checkpoint_callback,
log_gpu_memory='min_max',
# log_save_interval=opt.losses_log_every,
log_every_n_steps=opt.losses_log_every,
profiler=True,
# profiler='simple',
# row_log_interval=10, # what is it?
flush_logs_every_n_steps=10,
num_sanity_val_steps=0,
# val_check_interval=0.01,
# limit_train_batches=500,
# progress_bar_refresh_rate=0,
# fast_dev_run=True,
precision=opt.precision,
logger=wandb_logger
)
if os.getenv('EVALUATE', '0') == '1':
trainer.test(lit)
else:
trainer.fit(lit)
|