File size: 27,953 Bytes
c80917c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim

import numpy as np

import time
import os
from collections import defaultdict

import captioning.utils.opts as opts
import captioning.models as models
from captioning.data.pth_loader import CaptionDataset
import captioning.utils.eval_utils as eval_utils
import captioning.utils.misc as utils
from captioning.utils.rewards import init_scorer, get_self_critical_reward
from captioning.modules.loss_wrapper import LossWrapper

import pytorch_lightning as pl

import detectron2.utils.comm as d2comm
from detectron2.utils.env import seed_all_rng
seed_all_rng(1234)


class LitModel(pl.LightningModule):
    def __init__(self, opt):
        super().__init__()
        self.opt = opt
        # Intilaize dataset
        self.dataset = CaptionDataset(opt)
        opt.vocab_size = self.dataset.vocab_size
        opt.seq_length = self.dataset.seq_length
        self.batch_size = opt.batch_size

        # Build model
        opt.vocab = self.dataset.get_vocab()
        model = models.setup(opt)
        # print(model)
        del opt.vocab

        # wrapper with loss in it.
        lw_model = LossWrapper(model, opt)

        self.model = model
        self.lw_model = lw_model

        self.struc_flag = None
        self.sc_flag = None

        # if self.opt.use_clipscore:
        # if self.opt.use_clipscore or os.getenv('EVALUATE', '0') == '1':
        # if CLIP-S+Grammar is used in reward -> Launch another CLIP-S where parameter is unchanged
        if getattr(self.opt, 'use_grammar', False):
            from captioning.utils.clipscore import CLIPScore
            self.val_clipscore_model = CLIPScore(
                mode=opt.clipscore_mode, use_grammar=False)
            for p in self.val_clipscore_model.parameters():
                p.requires_grad = False
        else:
            if self.lw_model.clipscore_model is not None:
                self.val_clipscore_model = self.lw_model.clipscore_model
            else:
                from captioning.utils.clipscore import CLIPScore
                self.val_clipscore_model = CLIPScore(
                    mode=opt.clipscore_mode, use_grammar=False)
                for p in self.val_clipscore_model.parameters():
                    p.requires_grad = False
        self.val_clipscore_model.eval()

        # BERTSCORE
        from bert_score import BERTScorer
        self.bert_scorer = BERTScorer(
            lang="en",
        #     rescale_with_baseline=True,
            rescale_with_baseline=False,
            device='cpu'
        )

    def forward(self, *args, **kwargs):
        """
        I hate this design. Never pretend it as a nn.Module
        """
        raise NotImplementedError

    def train_dataloader(self):
        train_dataset = torch.utils.data.Subset(
            self.dataset,
            self.dataset.split_ix['train']
        )

        train_loader = torch.utils.data.DataLoader(
            dataset=train_dataset,
            batch_size=self.batch_size,
            shuffle=True,
            num_workers=4,
            collate_fn=self.dataset.collate_func
        )
        return train_loader

    def val_dataloader(self, split='val'):
        val_dataset = torch.utils.data.Subset(
            self.dataset,
            self.dataset.split_ix[split]
        )
        val_loader = torch.utils.data.DataLoader(
            val_dataset,
            batch_size=self.batch_size,
            shuffle=False,
            num_workers=4,
            drop_last=False,
            collate_fn=self.dataset.collate_func
        )
        return val_loader

    def test_dataloader(self):
        return self.val_dataloader('test')

    def training_step(self, data, batch_idx):
        sc_flag, struc_flag = self.sc_flag, self.struc_flag

        tmp = [data['fc_feats'], data['att_feats'],
               data['labels'], data['masks'], data['att_masks']]
        fc_feats, att_feats, labels, masks, att_masks = tmp
        if int(os.getenv('M2_cider', '0')) != 0:
            data['gts'] = data['rawgts']

        if self.opt.use_clipscore:
            clip_vis_feats = data['clip_vis_feats']
            model_out = self.lw_model(fc_feats, att_feats, labels, masks, att_masks,
                                      data['gts'], torch.arange(0, len(data['gts'])), sc_flag, struc_flag,
                                      clip_vis_feats=clip_vis_feats)
        else:
            model_out = self.lw_model(fc_feats, att_feats, labels, masks, att_masks,
                                      data['gts'], torch.arange(0, len(data['gts'])), sc_flag, struc_flag)
        loss = model_out['loss']

        data_time = self.trainer.profiler.recorded_durations["get_train_batch"][-1]
        data_time = torch.tensor(data_time)

        logger_logs = model_out.copy()
        # if struc_flag or sc_flag:
        #     logger_logs['reward'] = model_out['reward'].mean()
        #     logger_logs['reward_var'] = model_out['reward'].var(1).mean()
        if struc_flag or sc_flag:
            logger_logs['reward'] = model_out['reward'].mean()
            for k in ['CLIP-S', 'RefCLIP-S', 'CIDEr', 'grammar_reward']:
                if k in model_out:
                    logger_logs[k] = model_out[k]
        if struc_flag:
            logger_logs['reward_var'] = model_out['reward'].var(1).mean()

        logger_logs['scheduled_sampling_prob'] = torch.tensor(
            self.model.ss_prob)
        # logger_logs['training_loss'] = loss
        logger_logs['loss'] = loss
        logger_logs['data_time'] = data_time

        # UserWarning: The {progress_bar:dict keyword} was deprecated in 0.9.1 and will be removed in 1.0.0
        # Please use self.log(...) inside the lightningModule instead.

        # # log on a step or aggregate epoch metric to the logger and/or progress bar
        # # (inside LightningModule)
        # self.log('train_loss', loss, on_step=True, on_epoch=True, prog_bar=True)
        # warnings.warn(*args, **kwargs)
        # UserWarning: The {log:dict keyword} was deprecated in 0.9.1 and will be removed in 1.0.0
        # Please use self.log(...) inside the lightningModule instead.

        # output = {
        #     'loss': loss,
        #     'log': logger_logs,
        #     'progress_bar': {'data_time': data_time}
        # }

        for k, v in logger_logs.items():
            if k in ['reward', 'reward_var', 'data_time', 'CLIP-S', 'RefCLIP-S', 'CIDEr', 'grammar_reward']:
                self.log('train/'+k, v, prog_bar=True)
            else:
                self.log('train/'+k, v)

        return loss

    def validation_step(self, data, batch_idx):
        model = self.model
        crit = self.lw_model.crit

        opt = self.opt
        eval_kwargs = {'dataset': opt.input_json}
        eval_kwargs.update(vars(opt))

        # CLIPScore
        use_grammar = getattr(self.opt, 'use_grammar', False)
        joint_out = getattr(self.opt, 'joint_out', False)

        verbose = eval_kwargs.get('verbose', True)
        verbose_beam = eval_kwargs.get('verbose_beam', 0)
        verbose_loss = eval_kwargs.get('verbose_loss', 1)
        # num_images = eval_kwargs.get('num_images', eval_kwargs.get('val_images_use', -1))
        # lang_eval = eval_kwargs.get('language_eval', 0)
        dataset = eval_kwargs.get('dataset', 'coco')
        beam_size = eval_kwargs.get('beam_size', 1)
        sample_n = eval_kwargs.get('sample_n', 1)
        remove_bad_endings = eval_kwargs.get('remove_bad_endings', 0)
        # Use this nasty way to make other code clean since it's a global configuration
        os.environ["REMOVE_BAD_ENDINGS"] = str(remove_bad_endings)

        predictions = []
        n_predictions = []

        loss = torch.tensor(0)
        if data.get('labels', None) is not None and verbose_loss:
            # forward the model to get loss
            tmp = [data['fc_feats'], data['att_feats'],
                   data['labels'], data['masks'], data['att_masks']]
            fc_feats, att_feats, labels, masks, att_masks = tmp

            loss = crit(model(fc_feats, att_feats,
                              labels[..., :-1], att_masks), labels[..., 1:], masks[..., 1:])

            # forward the model to also get generated samples for each image
            # Only leave one feature for each image, in case duplicate sample
            tmp_eval_kwargs = eval_kwargs.copy()
            tmp_eval_kwargs.update({'sample_n': 1})
            seq, seq_logprobs = model(
                fc_feats, att_feats, att_masks, opt=tmp_eval_kwargs, mode='sample')
            seq = seq.data
            entropy = - (F.softmax(seq_logprobs, dim=2) *
                         seq_logprobs).sum(2).sum(1) / ((seq > 0).to(seq_logprobs).sum(1)+1)
            perplexity = - \
                seq_logprobs.gather(2, seq.unsqueeze(2)).squeeze(
                    2).sum(1) / ((seq > 0).to(seq_logprobs).sum(1)+1)

            # Print beam search
            if beam_size > 1 and verbose_beam:
                for i in range(fc_feats.shape[0]):
                    print('\n'.join([utils.decode_sequence(model.vocab, _[
                          'seq'].unsqueeze(0))[0] for _ in model.done_beams[i]]))
                    print('--' * 10)
            sents = utils.decode_sequence(model.vocab, seq)

            # if self.opt.use_clipscore or os.getenv('EVALUATE', '0') == '1':
            # text_feat = self.lw_model.clipscore_model.text_extract(sents)
            text_feat = self.val_clipscore_model.text_extract(sents, proj_norm=False)

            text_cont_feat = self.val_clipscore_model.clip_model.text_projection(text_feat)
            text_cont_feat = text_cont_feat / text_cont_feat.norm(dim=-1, keepdim=True)

            vis_feat = data['clip_vis_feats']
            # if self.opt.clipscore_mode == 'clip_s':
            #     clip_s = self.val_clipscore_model(text_feat=text_cont_feat, img_feat=vis_feat, mode='clip_s')

            # elif self.opt.clipscore_mode == 'refclip_s':
            clip_s = self.val_clipscore_model(text_feat=text_cont_feat, img_feat=vis_feat, mode='clip_s')
            # ref_text = utils.decode_sequence(model.vocab, data['gts'])

            gt_indices = torch.arange(0, len(data['gts']))
            data_gts = [data['gts'][_] for _ in gt_indices.tolist()]

            B = len(data_gts)

            gts = []
            gts_valid_mask = []
            max_n_refs = max([len(_gts) for _gts in data_gts])
            for i in range(len(data_gts)):
                _gts = utils.decode_sequence(model.vocab, data_gts[i])
                # pad references
                n_ref = len(_gts)
                _gts.extend([''] * (max_n_refs - n_ref))
                gts.extend(_gts)
                gts_valid_mask.extend([1] * n_ref + [0] * (max_n_refs - n_ref))
            assert len(gts) == B * max_n_refs
            assert len(gts_valid_mask) == B * max_n_refs

            ref_text = gts
            ref_text_mask = gts_valid_mask

            refclip_s = self.val_clipscore_model(
                text_feat=text_cont_feat, img_feat=vis_feat,
                ref_text=ref_text, ref_text_mask=ref_text_mask, mode='refclip_s')

            # use_grammar = getattr(self.opt, 'use_grammar', False)
            # joint_out = getattr(self.opt, 'joint_out', False)
            if use_grammar and not joint_out:
                with torch.no_grad():
                    # grammar_logit = self.val_clipscore_model.grammar_score_head(text_feat.view(-1, 512))
                    grammar_logit = self.lw_model.clipscore_model.grammar_score_head(text_feat.view(-1, 512))
                    grammar_prob = torch.softmax(grammar_logit, dim=-1)[:, 1]


            # BERTScore
            if next(self.bert_scorer._model.parameters()).device != self.device:
                self.bert_scorer._model.to(self.device)
                self.bert_scorer.device = self.device


            # [B*K] -> [B, K]
            ref_text_per_example = []
            for i in range(B):
                ref_text_list_example = []
                for k in range(max_n_refs):
                    ref = ref_text[i * max_n_refs + k]
                    if len(ref) > 0:
                        ref_text_list_example.append(ref)
                # assert len(ref_text_list_example) == max_n_refs
                ref_text_per_example.append(ref_text_list_example)
            assert len(ref_text_per_example) == B

            P, R, F1 = self.bert_scorer.score(
                sents,
                ref_text_per_example,
            )
            bertscore_f1 = F1
            # print('Example 5:')
            # for i in range(5):
            #     print('Generated:', sents[i])
            #     print('ref_text:', ref_text_per_example[i])
            #     print('BERT-Score:', F1[i].item())


            for k, sent in enumerate(sents):
                entry = {'image_id': data['infos'][k]['id'], 'caption': sent,
                         'perplexity': perplexity[k].item(), 'entropy': entropy[k].item()}
                if self.opt.use_clipscore or os.getenv('EVALUATE', '0') == '1':
                    # if self.opt.clipscore_mode == 'clip_s':
                        # entry['clipscore'] = clipscore[k].item()
                        # entry['CLIP-S'] = clip_s[k].item()
                    # elif self.opt.clipscore_mode == 'refclip_s':
                    entry['CLIP-S'] = clip_s[k].item()
                    entry['RefCLIP-S'] = refclip_s[k].item()

                if use_grammar and not joint_out:
                    entry['grammar_prob'] = grammar_prob[k].item()

                # BERT-S
                entry['BERT-S'] = bertscore_f1[k].item()

                if eval_kwargs.get('dump_path', 0) == 1:
                    entry['file_name'] = data['infos'][k]['file_path']
                predictions.append(entry)
                if eval_kwargs.get('dump_images', 0) == 1:
                    # dump the raw image to vis/ folder
                    cmd = 'cp "' + os.path.join(eval_kwargs['image_root'], data['infos'][k]['file_path']) + \
                        '" vis/imgs/img' + \
                        str(len(predictions)) + '.jpg'  # bit gross
                    print(cmd)
                    os.system(cmd)

                if verbose:
                    print('image %s: %s' %
                          (entry['image_id'], entry['caption']))

            if sample_n > 1:
                eval_utils.eval_split_n(model, n_predictions, [
                                        fc_feats, att_feats, att_masks, data], eval_kwargs)

        output = {
            # 'val_loss': loss,
            'loss': loss,
            'predictions': predictions,
            'n_predictions': n_predictions,
        }
        return output

    def test_step(self, *args, **kwargs):
        return self.validation_step(*args, **kwargs)

    def validation_epoch_end(self, outputs, split='val'):
        outputs = d2comm.gather(outputs)
        # master node
        if d2comm.is_main_process():
            assert self.trainer.node_rank == 0 and self.trainer.local_rank == 0
            outputs = sum(outputs, [])

            opt = self.opt
            # val_loss_mean = sum([_['val_loss']
            # val_loss_mean = sum([_['val_loss'].cpu()
            val_loss_mean = sum([_['loss'].cpu()
                                 for _ in outputs]) / len(outputs)

            predictions = sum([_['predictions'] for _ in outputs], [])
            if len(outputs[0]['n_predictions']) != 0:
                n_predictions = sum([_['n_predictions'] for _ in outputs], [])
            else:
                n_predictions = []

            lang_stats = None
            if len(n_predictions) > 0 and 'perplexity' in n_predictions[0]:
                n_predictions = sorted(
                    n_predictions, key=lambda x: x['perplexity'])

            if not os.path.isdir('eval_results'):
                os.mkdir('eval_results')
            torch.save((predictions, n_predictions), os.path.join(
                'eval_results/', '.saved_pred_' + opt.id + '_' + split + '.pth'))

            if opt.language_eval:
                lang_stats = eval_utils.language_eval(
                    opt.input_json, predictions, n_predictions, vars(opt), split)

            if opt.reduce_on_plateau:
                optimizer = self.trainer.optimizers[0]
                if 'CIDEr' in lang_stats:
                    optimizer.scheduler_step(-lang_stats['CIDEr'])
                else:
                    optimizer.scheduler_step(val_loss_mean)

            # out = {
            #     'val_loss': val_loss_mean
            # }
            out = {
                'loss': val_loss_mean
            }
            out.update(lang_stats)
            # out['to_monitor'] = lang_stats['CIDEr'] if lang_stats is not None else -val_loss_mean
            if self.opt.use_clipscore or os.getenv('EVALUATE', '0') == '1':
                # if self.opt.clipscore_mode == 'clip_s':
                    # out['clipscore'] = sum([p['clipscore'] for p in predictions]) / len(predictions)
                    # print('CLIPScore', out['clipscore'])
                    # out['CLIP-S'] = sum([p['CLIP-S'] for p in predictions]) / len(predictions)
                    # print('CLIP-S', out['CLIP-S'])
                # elif self.opt.clipscore_mode == 'refclip_s':
                out['CLIP-S'] = sum([p['CLIP-S'] for p in predictions]) / len(predictions)
                print('CLIP-S', out['CLIP-S'])

                out['RefCLIP-S'] = sum([p['RefCLIP-S'] for p in predictions]) / len(predictions)
                print('RefCLIP-S', out['RefCLIP-S'])

                if getattr(self.opt, 'use_grammar', False) and not getattr(self.opt, 'joint_out', False):
                    out['grammar_prob'] = sum([p['grammar_prob'] for p in predictions]) / len(predictions)
                    print('grammar_prob', out['grammar_prob'])

                out['BERT-S'] = sum([p['BERT-S'] for p in predictions]) / len(predictions)
                print('BERT-S', out['BERT-S'])
        else:
            out = {}

        out = d2comm.all_gather(out)[0]  # Only the one from master node
        assert len(out) > 0  # make sure the head has index 0

        # must all be tensors
        out = {k: torch.tensor(v) if not torch.is_tensor(
            v) else v for k, v in out.items()}

        # return {
        #     'progress_bar': {'val_loss': out['val_loss']},
        #     'log': out,
        # }
        for k, v in out.items():
            # if k in ['loss', 'clipscore', 'RefCLIP-S', 'CIDEr']:
            #     if split != 'test':
            #         self.log(f'{split}/{k}', v, prog_bar=True)
            # elif k == 'to_monitor':
            #     if split != 'test':
            #         self.log(f'{split}/{k}', v)
            # else:
            self.log(f'{split}/{k}', v)

    def test_epoch_end(self, outputs):
        # out = self.validation_epoch_end(outputs, 'test')
        # out['progress_bar'] = {
        #     # 'test_loss': out['progress_bar']['val_loss']
        #     'test_loss': out['progress_bar']['loss']
        # }
        # out['log']['test_loss'] = out['log']['val_loss']
        # del out['log']['val_loss']
        # del out['log']['to_monitor']
        
        # out['log'] = {'test_'+k if 'test' not in k else k:v \
        #               for k,v in out['log'].items()}
        
        # return out
        self.validation_epoch_end(outputs, 'test')
        
    def configure_optimizers(self):
        opt = self.opt
        model = self.model

        parameters = [p for p in model.parameters() if p.requires_grad]

        if opt.noamopt:
            # assert opt.caption_model in ['transformer', 'bert', 'm2transformer'], 'noamopt can only work with transformer'
            optimizer = utils.get_std_opt(
                model, optim_func=opt.optim, factor=opt.noamopt_factor, warmup=opt.noamopt_warmup)
        elif opt.reduce_on_plateau:
            # optimizer = utils.build_optimizer(model.parameters(), opt)
            optimizer = utils.build_optimizer(parameters, opt)
            optimizer = utils.ReduceLROnPlateau(optimizer,
                                                factor=opt.reduce_on_plateau_factor,
                                                patience=opt.reduce_on_plateau_patience)
        else:
            # optimizer = utils.build_optimizer(model.parameters(), opt)
            optimizer = utils.build_optimizer(parameters, opt)
        return [optimizer], []

    def optimizer_step(self, epoch, batch_idx, optimizer,
                       optimizer_idx, *args, **kwargs):
        # warm up lr
        opt = self.opt
        iteration = self.trainer.global_step
        if opt.use_warmup and (iteration < opt.noamopt_warmup):
            opt.current_lr = opt.learning_rate * \
                (iteration+1) / opt.noamopt_warmup
            utils.set_lr(optimizer, opt.current_lr)

        super().optimizer_step(epoch, batch_idx, optimizer,
                               optimizer_idx, *args, **kwargs)

    def state_dict(self):
        """
        Save the model state dict as well as opt and vocab
        """
        state_dict = self.model.state_dict()
        device = next(iter(state_dict.values())).device
        assert '_vocab' not in state_dict and '_opt' not in state_dict, 'Just in case'
        state_dict.update({
            '_vocab': utils.serialize_to_tensor(self.model.vocab).to(device),
            '_opt': utils.serialize_to_tensor(self.opt).to(device)
        })
        return state_dict

    def load_state_dict(self, state_dict=None, strict=True):
        if '_vocab' in state_dict:
            self.model.vocab = utils.deserialize(state_dict['_vocab'])
            del state_dict['_vocab']
        # elif strict:
        #     raise KeyError
        if '_opt' in state_dict:
            saved_model_opt = utils.deserialize(state_dict['_opt'])
            del state_dict['_opt']
            opt = self.opt
            # Make sure the saved opt is compatible with the curren topt
            need_be_same = ["caption_model",
                            "rnn_type", "rnn_size", "num_layers"]
            for checkme in need_be_same:
                if getattr(saved_model_opt, checkme) in ['updown', 'topdown'] and \
                        getattr(opt, checkme) in ['updown', 'topdown']:
                    continue
                assert getattr(saved_model_opt, checkme) == getattr(
                    opt, checkme), "Command line argument and saved model disagree on '%s' " % checkme
        # elif strict:
        #     raise KeyError
        self.model.load_state_dict(state_dict, strict)


class OnEpochStartCallback(pl.Callback):

    def on_epoch_start(self, trainer, pl_module):
        # Update lr/training stage/scheduled sampling prob etc.
        opt = pl_module.opt
        model = pl_module.model
        epoch = trainer.current_epoch
        optimizer = trainer.optimizers[0]

        if not opt.noamopt and not opt.reduce_on_plateau:
            # Assign the learning rate
            if epoch > opt.learning_rate_decay_start and opt.learning_rate_decay_start >= 0:
                frac = (
                    epoch - opt.learning_rate_decay_start) // opt.learning_rate_decay_every
                decay_factor = opt.learning_rate_decay_rate ** frac
                opt.current_lr = opt.learning_rate * decay_factor
            else:
                opt.current_lr = opt.learning_rate
            utils.set_lr(optimizer, opt.current_lr)  # set the decayed rate
        # Assign the scheduled sampling prob
        if epoch > opt.scheduled_sampling_start and opt.scheduled_sampling_start >= 0:
            frac = (
                epoch - opt.scheduled_sampling_start) // opt.scheduled_sampling_increase_every
            opt.ss_prob = min(opt.scheduled_sampling_increase_prob *
                              frac, opt.scheduled_sampling_max_prob)
            model.ss_prob = opt.ss_prob

        # If start self critical training
        if opt.self_critical_after != -1 and epoch >= opt.self_critical_after:
            sc_flag = True
            init_scorer(opt.cached_tokens)
        else:
            sc_flag = False

        # If start structure loss training
        if opt.structure_after != -1 and epoch >= opt.structure_after:
            struc_flag = True
            init_scorer(opt.cached_tokens)
        else:
            struc_flag = False

        pl_module.struc_flag = struc_flag
        pl_module.sc_flag = sc_flag


class ModelCheckpoint(pl.callbacks.ModelCheckpoint):

    def on_keyboard_interrupt(self, trainer, pl_module):
        # Save model when keyboard interrupt
        filepath = os.path.join(self.dirpath, self.prefix + 'interrupt.ckpt')
        self._save_model(filepath)


opt = opts.parse_opt()

checkpoint_callback = ModelCheckpoint(
    filepath=opt.checkpoint_path,
    # dirpath=opt.checkpoint_path,
    save_last=True,
    save_top_k=1,
    verbose=True,
    # monitor='to_monitor',
    # monitor='val/to_monitor',
    monitor='val/CIDEr',
    mode='max',
    # prefix=opt.id+'_',
    prefix=opt.id,
    # filename=f'{opt.id}_',
)

verbose = True
# import torch
# if torch.cuda.current_device() in [0, -1]:
if 'LOCAL_RANK' in os.environ and os.environ['LOCAL_RANK'] != '0':
    verbose = False

if verbose:
    print(opt)
    print("""
    val_image_use,
    save_checkpoint_very
    save_every_epoch,
    save_history-ckpt will be ignored.
    """)

# Lightning defines batch size as batch size per gpu
assert opt.batch_size % torch.cuda.device_count() == 0
opt.batch_size = opt.batch_size // torch.cuda.device_count()

# If resume from last checkpoint
# if opt.start_from is not None and os.path.isfile(os.path.join(opt.start_from, f'{opt.id}_last.ckpt')):
#     resume_from = os.path.join(opt.start_from, f'{opt.id}_last.ckpt')
if opt.start_from is not None:
    resume_from = os.path.join(opt.start_from, f'{opt.id}-last.ckpt')
    if os.path.isfile(resume_from):
        if verbose:
            print('Loading checkpoint from', resume_from)
    else:
        print("Checkpoint not found:", resume_from)
        resume_from = None
else:
    resume_from = None

from pytorch_lightning.loggers import WandbLogger
wandb_logger = WandbLogger(
    project='CLIP-ViL-COCOCaption',
    name=opt.id,
)

if verbose:
    wandb_logger.experiment.config.update(opt)
    from pathlib import Path
    import glob
    import wandb
    # src_dir = Path(__file__).resolve().parent.parent
    glob_str = "**/*.py"
    base_path = './'
    wandb.save(glob_str=glob_str, base_path=base_path)
    
    # code = wandb.Artifact('project-source', type='code')
    # for path in glob.glob('**/*.py', recursive=True):
    #     code.add_file(path, name='source/'+path)
    #     print(path)
    # wandb.run.use_artifact(code)




lit = LitModel(opt)
# warning grad_clip_mode is ignored.
trainer = pl.Trainer(
    callbacks=[
        OnEpochStartCallback(),
        # pl.callbacks.lr_logger.LearningRateLogger()
        pl.callbacks.LearningRateMonitor()
    ],
    default_root_dir=opt.checkpoint_path,
    resume_from_checkpoint=resume_from,
    distributed_backend='ddp',
    check_val_every_n_epoch=1,
    max_epochs=opt.max_epochs,
    gradient_clip_val=opt.grad_clip_value,
    gpus=torch.cuda.device_count(),
    checkpoint_callback=checkpoint_callback,
    log_gpu_memory='min_max',
    # log_save_interval=opt.losses_log_every,
    log_every_n_steps=opt.losses_log_every,
    profiler=True,
    # profiler='simple',
    # row_log_interval=10,  # what is it?
    flush_logs_every_n_steps=10,
    num_sanity_val_steps=0,
    # val_check_interval=0.01,
    # limit_train_batches=500,
    # progress_bar_refresh_rate=0,
    # fast_dev_run=True,
    precision=opt.precision,
    logger=wandb_logger
)

if os.getenv('EVALUATE', '0') == '1':
    trainer.test(lit)
else:
    trainer.fit(lit)