File size: 5,443 Bytes
c80917c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205

from tqdm import tqdm
from pprint import pprint
import pandas as pd
import argparse
import re
import json
import nltk
from nltk.tokenize import word_tokenize  
from nltk.stem.porter import PorterStemmer
p_stemmer = PorterStemmer()

# nltk.download('punkt')
# nltk.download('wordnet')
# nltk.download('stopwords')

import language_evaluation
evaluator = language_evaluation.CocoEvaluator()


def nltk_process(text):
    # Tokenization
    nltk_tokenList = word_tokenize(text)

    # Stemming
    nltk_stemedList = []
    for word in nltk_tokenList:
        nltk_stemedList.append(p_stemmer.stem(word))

    filtered_sentence = nltk_stemedList

    # Removing Punctuation

    tokens = [re.sub(r'[^a-zA-Z0-9]', '', tok) for tok in filtered_sentence]

    text = " ".join(tokens)

    return text


def calculate_finegrained_scores(pred_id2sent, id2caption, use_coco_eval=False):
    if use_coco_eval:
        n_total = 0
        refs = []
        hyps = []
        for id, gt_captions in id2caption.items():
            pred_sent = pred_id2sent[id]

            refs.append(gt_captions)
            hyps.append(pred_sent)

            n_total += 1

        print('caption')
        results = evaluator.run_evaluation(hyps, refs)
        pprint(results)

    n_total = 0
    total_score = 0
    for id, gt_phrases in id2background.items():
        pred_sent = pred_id2sent[id]

        score = 0
        n_phrases = len(gt_phrases)

        for gt_phrase in gt_phrases:
            word_score = 0
            for gt_word in gt_phrase.split():
                if gt_word in pred_sent:
                    word_score += 1
            if len(gt_phrase.split()) > 0:
                score += word_score / len(gt_phrase.split())

        if n_phrases > 0:
            score /= n_phrases

        total_score += score
        n_total += 1
    print('background')
#     print('# retrieved words:', n_retrieved)
    print(f'Acc: {total_score / n_total * 100:.2f}')

    n_total = 0
    total_score = 0
    for id, gt_phrases in id2object.items():
        pred_sent = pred_id2sent[id]

        score = 0
        n_phrases = len(gt_phrases)

        for gt_phrase in gt_phrases:
            word_score = 0
            for gt_word in gt_phrase.split():
                if gt_word in pred_sent:
                    word_score += 1
            if len(gt_phrase.split()) > 0:
                score += word_score / len(gt_phrase.split())

        if n_phrases > 0:
            score /= n_phrases

        total_score += score
        n_total += 1
    print('object')
#     print('# retrieved words:', n_retrieved)
    print(f'Acc: {total_score / n_total * 100:.2f}')

    n_total = 0
    total_score = 0
    for id, gt_phrases in id2relation.items():
        pred_sent = pred_id2sent[id]

        score = 0
        n_phrases = len(gt_phrases)

        for gt_phrase in gt_phrases:
            word_score = 0
            for gt_word in gt_phrase.split():
                if gt_word in pred_sent:
                    word_score += 1
            if len(gt_phrase.split()) > 0:
                score += word_score / len(gt_phrase.split())

        if n_phrases > 0:
            score /= n_phrases

        total_score += score
        n_total += 1
    print('relation')
#     print('# retrieved words:', n_retrieved)
    print(f'Acc: {total_score / n_total * 100:.2f}')


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--finecapeval_path', type=str, default="data/FineCapEval.csv")
    parser.add_argument('--generated_id2caption', type=str, default="FineCapEval_results/mle.json")
    args = parser.parse_args()

    df = pd.read_csv(args.finecapeval_path)
    assert df.shape == (5000, 5)

    generated_id2caption = json.load(open(args.generated_id2caption, 'r'))

    print("Preprocessing GT FineCapEval data...")
    id2caption = {}
    id2background = {}
    id2object = {}
    id2relation = {}

    for row in tqdm(df.itertuples(), total=len(df)):

        id = row.image.split('.')[0]
        caption = row.caption
        background = row.background
        object = row.object
        relation = row.relation

        if not isinstance(caption, str):
            continue
        if not isinstance(background, str):
            continue
        if not isinstance(object, str):
            continue
        if not isinstance(relation, str):
            continue

        if id not in id2caption:
            id2caption[id] = []
            id2background[id] = []
            id2object[id] = []
            id2relation[id] = []

        id2caption[id].append(caption)

        phrases = []
        for phrase in background.lower().split('\;'):
            if len(phrase) > 1:
                phrase = nltk_process(phrase)
                phrases.append(phrase)
        id2background[id].extend(phrases)

        phrases = []
        for phrase in object.lower().split('\;'):
            if len(phrase) > 1:
                phrase = nltk_process(phrase)
                phrases.append(phrase)
        id2object[id].extend(phrases)

        phrases = []
        for phrase in relation.lower().split('\;'):
            if len(phrase) > 1:
                phrase = nltk_process(phrase)
                phrases.append(phrase)
        id2relation[id].extend(phrases)

    print("Calculating scores...")
    calculate_finegrained_scores(
        generated_id2caption,
        id2caption,
        use_coco_eval=True)