File size: 8,569 Bytes
c80917c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
"""
Preprocess a raw json dataset into hdf5/json files for use in data_loader.py

Input: json file that has the form
[{ file_path: 'path/img.jpg', captions: ['a caption', ...] }, ...]
example element in this list would look like
{'captions': [u'A man with a red helmet on a small moped on a dirt road. ', u'Man riding a motor bike on a dirt road on the countryside.', u'A man riding on the back of a motorcycle.', u'A dirt path with a young person on a motor bike rests to the foreground of a verdant area with a bridge and a background of cloud-wreathed mountains. ', u'A man in a red shirt and a red hat is on a motorcycle on a hill side.'], 'file_path': u'val2014/COCO_val2014_000000391895.jpg', 'id': 391895}

This script reads this json, does some basic preprocessing on the captions
(e.g. lowercase, etc.), creates a special UNK token, and encodes everything to arrays

Output: a json file and an hdf5 file
The hdf5 file contains several fields:
/labels is (M,max_length) uint32 array of encoded labels, zero padded
/label_start_ix and /label_end_ix are (N,) uint32 arrays of pointers to the 
  first and last indices (in range 1..M) of labels for each image
/label_length stores the length of the sequence for each of the M sequences

The json file has a dict that contains:
- an 'ix_to_word' field storing the vocab in form {ix:'word'}, where ix is 1-indexed
- an 'images' field that is a list holding auxiliary information for each image, 
  such as in particular the 'split' it was assigned to.
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import json
import argparse
from random import shuffle, seed
import string
# non-standard dependencies:
import h5py
import numpy as np
import torch
import torchvision.models as models
import skimage.io
from PIL import Image


def build_vocab(imgs, params):
    count_thr = params['word_count_threshold']

    # count up the number of words
    counts = {}
    for img in imgs:
        for sent in img['sentences']:
            for w in sent['tokens']:
                counts[w] = counts.get(w, 0) + 1
    cw = sorted([(count,w) for w,count in counts.items()], reverse=True)
    print('top words and their counts:')
    print('\n'.join(map(str,cw[:20])))

    # print some stats
    total_words = sum(counts.values())
    print('total words:', total_words)
    bad_words = [w for w,n in counts.items() if n <= count_thr]
    vocab = [w for w,n in counts.items() if n > count_thr]
    bad_count = sum(counts[w] for w in bad_words)
    print('number of bad words: %d/%d = %.2f%%' % (len(bad_words), len(counts), len(bad_words)*100.0/len(counts)))
    print('number of words in vocab would be %d' % (len(vocab), ))
    print('number of UNKs: %d/%d = %.2f%%' % (bad_count, total_words, bad_count*100.0/total_words))

    # lets look at the distribution of lengths as well
    sent_lengths = {}
    for img in imgs:
        for sent in img['sentences']:
            txt = sent['tokens']
            nw = len(txt)
            sent_lengths[nw] = sent_lengths.get(nw, 0) + 1
    max_len = max(sent_lengths.keys())
    print('max length sentence in raw data: ', max_len)
    print('sentence length distribution (count, number of words):')
    sum_len = sum(sent_lengths.values())
    for i in range(max_len+1):
        print('%2d: %10d   %f%%' % (i, sent_lengths.get(i,0), sent_lengths.get(i,0)*100.0/sum_len))

    # lets now produce the final annotations
    if bad_count > 0:
        # additional special UNK token we will use below to map infrequent words to
        print('inserting the special UNK token')
        vocab.append('UNK')
    
    for img in imgs:
        img['final_captions'] = []
        for sent in img['sentences']:
            txt = sent['tokens']
            caption = [w if counts.get(w,0) > count_thr else 'UNK' for w in txt]
            img['final_captions'].append(caption)

    return vocab


def encode_captions(imgs, params, wtoi):
    """ 
    encode all captions into one large array, which will be 1-indexed.
    also produces label_start_ix and label_end_ix which store 1-indexed 
    and inclusive (Lua-style) pointers to the first and last caption for
    each image in the dataset.
    """

    max_length = params['max_length']
    N = len(imgs)
    M = sum(len(img['final_captions']) for img in imgs) # total number of captions

    label_arrays = []
    label_start_ix = np.zeros(N, dtype='uint32') # note: these will be one-indexed
    label_end_ix = np.zeros(N, dtype='uint32')
    label_length = np.zeros(M, dtype='uint32')
    caption_counter = 0
    counter = 1
    for i,img in enumerate(imgs):
        n = len(img['final_captions'])
        assert n > 0, 'error: some image has no captions'

        Li = np.zeros((n, max_length), dtype='uint32')
        for j,s in enumerate(img['final_captions']):
            label_length[caption_counter] = min(max_length, len(s)) # record the length of this sequence
            caption_counter += 1
            for k,w in enumerate(s):
                if k < max_length:
                    Li[j,k] = wtoi[w]

        # note: word indices are 1-indexed, and captions are padded with zeros
        label_arrays.append(Li)
        label_start_ix[i] = counter
        label_end_ix[i] = counter + n - 1
        
        counter += n
    
    L = np.concatenate(label_arrays, axis=0) # put all the labels together
    assert L.shape[0] == M, 'lengths don\'t match? that\'s weird'
    assert np.all(label_length > 0), 'error: some caption had no words?'

    print('encoded captions to array of size ', L.shape)
    return L, label_start_ix, label_end_ix, label_length


def main(params):

    imgs = json.load(open(params['input_json'], 'r'))
    imgs = imgs['images']

    seed(123) # make reproducible
    
    # # create the vocab
    # vocab = build_vocab(imgs, params)
    # itow = {i+1:w for i,w in enumerate(vocab)} # a 1-indexed vocab translation table
    # wtoi = {w:i+1 for i,w in enumerate(vocab)} # inverse table

    itow = imgs['ix_to_word']
    wtoi = {w:i for i, w in itow.items()}
    
    # encode captions in large arrays, ready to ship to hdf5 file
    L, label_start_ix, label_end_ix, label_length = encode_captions(imgs, params, wtoi)

    # create output h5 file
    N = len(imgs)
    f_lb = h5py.File(params['output_h5']+'_label.h5', "w")
    f_lb.create_dataset("labels", dtype='uint32', data=L)
    f_lb.create_dataset("label_start_ix", dtype='uint32', data=label_start_ix)
    f_lb.create_dataset("label_end_ix", dtype='uint32', data=label_end_ix)
    f_lb.create_dataset("label_length", dtype='uint32', data=label_length)
    f_lb.close()

    # create output json file
    out = {}
    out['ix_to_word'] = itow # encode the (1-indexed) vocab
    out['images'] = []
    for i,img in enumerate(imgs):
        
        jimg = {}
        jimg['split'] = img['split']
        if 'filename' in img: jimg['file_path'] = os.path.join(img.get('filepath', ''), img['filename']) # copy it over, might need
        if 'cocoid' in img:
            jimg['id'] = img['cocoid'] # copy over & mantain an id, if present (e.g. coco ids, useful)
        elif 'imgid' in img:
            jimg['id'] = img['imgid']

        if params['images_root'] != '':
            with Image.open(os.path.join(params['images_root'], img['filepath'], img['filename'])) as _img:
                jimg['width'], jimg['height'] = _img.size

        out['images'].append(jimg)
    
    json.dump(out, open(params['output_json'], 'w'))
    print('wrote ', params['output_json'])

if __name__ == "__main__":

    parser = argparse.ArgumentParser()

    # input json
    parser.add_argument('--input_json', required=True, help='input json file to process into hdf5')
    parser.add_argument('--output_json', default='data.json', help='output json file')
    parser.add_argument('--output_h5', default='data', help='output h5 file')
    parser.add_argument('--images_root', default='', help='root location in which images are stored, to be prepended to file_path in input json')

    # options
    parser.add_argument('--max_length', default=16, type=int, help='max length of a caption, in number of words. captions longer than this get clipped.')
    parser.add_argument('--word_count_threshold', default=5, type=int, help='only words that occur more than this number of times will be put in vocab')

    args = parser.parse_args()
    params = vars(args) # convert to ordinary dict
    print('parsed input parameters:')
    print(json.dumps(params, indent = 2))
    main(params)