File size: 7,930 Bytes
c80917c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import *
from . import utils

from .CaptionModel import CaptionModel

class ShowTellModel(CaptionModel):
    def __init__(self, opt):
        super(ShowTellModel, self).__init__()
        self.vocab_size = opt.vocab_size
        self.input_encoding_size = opt.input_encoding_size
        self.rnn_type = opt.rnn_type
        self.rnn_size = opt.rnn_size
        self.num_layers = opt.num_layers
        self.drop_prob_lm = opt.drop_prob_lm
        self.seq_length = opt.seq_length
        self.fc_feat_size = opt.fc_feat_size

        self.ss_prob = 0.0 # Schedule sampling probability

        self.img_embed = nn.Linear(self.fc_feat_size, self.input_encoding_size)
        self.core = getattr(nn, self.rnn_type.upper())(self.input_encoding_size, self.rnn_size, self.num_layers, bias=False, dropout=self.drop_prob_lm)
        self.embed = nn.Embedding(self.vocab_size + 1, self.input_encoding_size)
        self.logit = nn.Linear(self.rnn_size, self.vocab_size + 1)
        self.dropout = nn.Dropout(self.drop_prob_lm)

        self.init_weights()

    def init_weights(self):
        initrange = 0.1
        self.embed.weight.data.uniform_(-initrange, initrange)
        self.logit.bias.data.fill_(0)
        self.logit.weight.data.uniform_(-initrange, initrange)

    def init_hidden(self, bsz):
        weight = self.logit.weight
        if self.rnn_type == 'lstm':
            return (weight.new_zeros(self.num_layers, bsz, self.rnn_size),
                    weight.new_zeros(self.num_layers, bsz, self.rnn_size))
        else:
            return weight.new_zeros(self.num_layers, bsz, self.rnn_size)

    def _forward(self, fc_feats, att_feats, seq, att_masks=None):
        batch_size = fc_feats.size(0)
        seq_per_img = seq.shape[0] // batch_size
        state = self.init_hidden(batch_size*seq_per_img)
        outputs = []

        if seq_per_img > 1:
            fc_feats = utils.repeat_tensors(seq_per_img, fc_feats)

        for i in range(seq.size(1) + 1):
            if i == 0:
                xt = self.img_embed(fc_feats)
            else:
                if self.training and i >= 2 and self.ss_prob > 0.0: # otherwiste no need to sample
                    sample_prob = fc_feats.data.new(batch_size*seq_per_img).uniform_(0, 1)
                    sample_mask = sample_prob < self.ss_prob
                    if sample_mask.sum() == 0:
                        it = seq[:, i-1].clone()
                    else:
                        sample_ind = sample_mask.nonzero().view(-1)
                        it = seq[:, i-1].data.clone()
                        #prob_prev = torch.exp(outputs[-1].data.index_select(0, sample_ind)) # fetch prev distribution: shape Nx(M+1)
                        #it.index_copy_(0, sample_ind, torch.multinomial(prob_prev, 1).view(-1))
                        prob_prev = torch.exp(outputs[-1].data) # fetch prev distribution: shape Nx(M+1)
                        it.index_copy_(0, sample_ind, torch.multinomial(prob_prev, 1).view(-1).index_select(0, sample_ind))
                else:
                    it = seq[:, i-1].clone()                
                # break if all the sequences end
                if i >= 2 and seq[:, i-1].data.sum() == 0:
                    break
                xt = self.embed(it)

            output, state = self.core(xt.unsqueeze(0), state)
            output = F.log_softmax(self.logit(self.dropout(output.squeeze(0))), dim=1)
            outputs.append(output)

        return torch.cat([_.unsqueeze(1) for _ in outputs[1:]], 1).contiguous()

    def get_logprobs_state(self, it, state):
        # 'it' contains a word index
        xt = self.embed(it)
                
        output, state = self.core(xt.unsqueeze(0), state)
        logprobs = F.log_softmax(self.logit(self.dropout(output.squeeze(0))), dim=1)

        return logprobs, state

    def _sample_beam(self, fc_feats, att_feats, att_masks=None, opt={}):
        beam_size = opt.get('beam_size', 10)
        batch_size = fc_feats.size(0)

        assert beam_size <= self.vocab_size + 1, 'lets assume this for now, otherwise this corner case causes a few headaches down the road. can be dealt with in future if needed'
        seq = torch.LongTensor(self.seq_length, batch_size).zero_()
        seqLogprobs = torch.FloatTensor(self.seq_length, batch_size)
        # lets process every image independently for now, for simplicity

        self.done_beams = [[] for _ in range(batch_size)]
        for k in range(batch_size):
            state = self.init_hidden(beam_size)
            for t in range(2):
                if t == 0:
                    xt = self.img_embed(fc_feats[k:k+1]).expand(beam_size, self.input_encoding_size)
                elif t == 1: # input <bos>
                    it = fc_feats.data.new(beam_size).long().zero_()
                    xt = self.embed(it)

                output, state = self.core(xt.unsqueeze(0), state)
                logprobs = F.log_softmax(self.logit(self.dropout(output.squeeze(0))), dim=1)

            self.done_beams[k] = self.beam_search(state, logprobs, opt=opt)
            seq[:, k] = self.done_beams[k][0]['seq'] # the first beam has highest cumulative score
            seqLogprobs[:, k] = self.done_beams[k][0]['logps']
        # return the samples and their log likelihoods
        return seq.transpose(0, 1), seqLogprobs.transpose(0, 1)

    def _sample(self, fc_feats, att_feats, att_masks=None, opt={}):
        sample_method = opt.get('sample_method', 'greedy')
        beam_size = opt.get('beam_size', 1)
        temperature = opt.get('temperature', 1.0)
        if beam_size > 1 and sample_method in ['greedy', 'beam_search']:
            return self.sample_beam(fc_feats, att_feats, opt)

        batch_size = fc_feats.size(0)
        state = self.init_hidden(batch_size)
        seq = fc_feats.new_zeros(batch_size, self.seq_length, dtype=torch.long)
        seqLogprobs = fc_feats.new_zeros(batch_size, self.seq_length)
        for t in range(self.seq_length + 2):
            if t == 0:
                xt = self.img_embed(fc_feats)
            else:
                if t == 1: # input <bos>
                    it = fc_feats.data.new(batch_size).long().zero_()
                xt = self.embed(it)

            output, state = self.core(xt.unsqueeze(0), state)
            logprobs = F.log_softmax(self.logit(self.dropout(output.squeeze(0))), dim=1)

            # sample the next word
            if t == self.seq_length + 1: # skip if we achieve maximum length
                break
            if sample_method == 'greedy':
                sampleLogprobs, it = torch.max(logprobs.data, 1)
                it = it.view(-1).long()
            else:
                if temperature == 1.0:
                    prob_prev = torch.exp(logprobs.data).cpu() # fetch prev distribution: shape Nx(M+1)
                else:
                    # scale logprobs by temperature
                    prob_prev = torch.exp(torch.div(logprobs.data, temperature)).cpu()
                it = torch.multinomial(prob_prev, 1).to(logprobs.device)
                sampleLogprobs = logprobs.gather(1, it) # gather the logprobs at sampled positions
                it = it.view(-1).long() # and flatten indices for downstream processing

            if t >= 1:
                # stop when all finished
                if t == 1:
                    unfinished = it > 0
                else:
                    unfinished = unfinished & (it > 0)
                it = it * unfinished.type_as(it)
                seq[:,t-1] = it #seq[t] the input of t+2 time step
                seqLogprobs[:,t-1] = sampleLogprobs.view(-1)
                if unfinished.sum() == 0:
                    break

        return seq, seqLogprobs