Spaces:
Runtime error
Runtime error
File size: 5,800 Bytes
40ad524 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
import torch
import torch.nn as nn
import numpy as np
import json
import captioning.utils.opts as opts
import captioning.models as models
import captioning.utils.misc as utils
import pytorch_lightning as pl
import gradio as gr
# Checkpoint class
class ModelCheckpoint(pl.callbacks.ModelCheckpoint):
def on_keyboard_interrupt(self, trainer, pl_module):
# Save model when keyboard interrupt
filepath = os.path.join(self.dirpath, self.prefix + 'interrupt.ckpt')
self._save_model(filepath)
device = 'cpu' #@param ["cuda", "cpu"] {allow-input: true}
reward = 'clips_grammar' #@param ["mle", "cider", "clips", "cider_clips", "clips_grammar"] {allow-input: true}
if reward == 'mle':
cfg = f'./configs/phase1/clipRN50_{reward}.yml'
else:
cfg = f'./configs/phase2/clipRN50_{reward}.yml'
print("Loading cfg from", cfg)
opt = opts.parse_opt(parse=False, cfg=cfg)
import gdown
if reward == "mle":
url = "https://drive.google.com/drive/folders/1hfHWDn5iXsdjB63E5zdZBAoRLWHQC3LD"
elif reward == "cider":
url = "https://drive.google.com/drive/folders/1MnSmCd8HFnBvQq_4K-q4vsVkzEw0OIOs"
elif reward == "clips":
url = "https://drive.google.com/drive/folders/1toceycN-qilHsbYjKalBLtHJck1acQVe"
elif reward == "cider_clips":
url = "https://drive.google.com/drive/folders/1toceycN-qilHsbYjKalBLtHJck1acQVe"
elif reward == "clips_grammar":
url = "https://drive.google.com/drive/folders/1nSX9aS7pPK4-OTHYtsUD_uEkwIQVIV7W"
gdown.download_folder(url, quiet=True, use_cookies=False, output="save/")
url = "https://drive.google.com/uc?id=1HNRE1MYO9wxmtMHLC8zURraoNFu157Dp"
gdown.download(url, quiet=True, use_cookies=False, output="data/")
dict_json = json.load(open('./data/cocotalk.json'))
print(dict_json.keys())
ix_to_word = dict_json['ix_to_word']
vocab_size = len(ix_to_word)
print('vocab size:', vocab_size)
seq_length = 1
opt.vocab_size = vocab_size
opt.seq_length = seq_length
opt.batch_size = 1
opt.vocab = ix_to_word
# opt.use_grammar = False
model = models.setup(opt)
del opt.vocab
ckpt_path = opt.checkpoint_path + '-last.ckpt'
print("Loading checkpoint from", ckpt_path)
raw_state_dict = torch.load(
ckpt_path,
map_location=device)
strict = True
state_dict = raw_state_dict['state_dict']
if '_vocab' in state_dict:
model.vocab = utils.deserialize(state_dict['_vocab'])
del state_dict['_vocab']
elif strict:
raise KeyError
if '_opt' in state_dict:
saved_model_opt = utils.deserialize(state_dict['_opt'])
del state_dict['_opt']
# Make sure the saved opt is compatible with the curren topt
need_be_same = ["caption_model",
"rnn_type", "rnn_size", "num_layers"]
for checkme in need_be_same:
if getattr(saved_model_opt, checkme) in ['updown', 'topdown'] and \
getattr(opt, checkme) in ['updown', 'topdown']:
continue
assert getattr(saved_model_opt, checkme) == getattr(
opt, checkme), "Command line argument and saved model disagree on '%s' " % checkme
elif strict:
raise KeyError
res = model.load_state_dict(state_dict, strict)
print(res)
model = model.to(device)
model.eval();
import clip
from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize
from PIL import Image
from timm.models.vision_transformer import resize_pos_embed
clip_model, clip_transform = clip.load("RN50", jit=False, device=device)
preprocess = Compose([
Resize((448, 448), interpolation=Image.BICUBIC),
CenterCrop((448, 448)),
ToTensor()
])
image_mean = torch.Tensor([0.48145466, 0.4578275, 0.40821073]).to(device).reshape(3, 1, 1)
image_std = torch.Tensor([0.26862954, 0.26130258, 0.27577711]).to(device).reshape(3, 1, 1)
num_patches = 196 #600 * 1000 // 32 // 32
pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, clip_model.visual.attnpool.positional_embedding.shape[-1], device=device),)
pos_embed.weight = resize_pos_embed(clip_model.visual.attnpool.positional_embedding.unsqueeze(0), pos_embed)
clip_model.visual.attnpool.positional_embedding = pos_embed
def inference(img):
with torch.no_grad():
image = preprocess(img)
image = torch.tensor(np.stack([image])).to(device)
image -= image_mean
image /= image_std
tmp_att, tmp_fc = clip_model.encode_image(image)
tmp_att = tmp_att[0].permute(1, 2, 0)
tmp_fc = tmp_fc[0]
att_feat = tmp_att
fc_feat = tmp_fc
# Inference configurations
eval_kwargs = {}
eval_kwargs.update(vars(opt))
verbose = eval_kwargs.get('verbose', True)
verbose_beam = eval_kwargs.get('verbose_beam', 0)
verbose_loss = eval_kwargs.get('verbose_loss', 1)
# dataset = eval_kwargs.get('dataset', 'coco')
beam_size = eval_kwargs.get('beam_size', 1)
sample_n = eval_kwargs.get('sample_n', 1)
remove_bad_endings = eval_kwargs.get('remove_bad_endings', 0)
with torch.no_grad():
fc_feats = torch.zeros((1,0)).to(device)
att_feats = att_feat.view(1, 196, 2048).float().to(device)
att_masks = None
# forward the model to also get generated samples for each image
# Only leave one feature for each image, in case duplicate sample
tmp_eval_kwargs = eval_kwargs.copy()
tmp_eval_kwargs.update({'sample_n': 1})
seq, seq_logprobs = model(
fc_feats, att_feats, att_masks, opt=tmp_eval_kwargs, mode='sample')
seq = seq.data
sents = utils.decode_sequence(model.vocab, seq)
return sents
demo = gr.Blocks()
with demo:
gr.Markdown(
"""
# Demo for CLIP-Caption-Reward
""")
inp = gr.Image(type="pil")
out = gr.Textbox()
image_button = gr.Button("Run")
image_button.click(fn=inference
inputs=inp,
outputs=out)
demo.launch() |