File size: 5,800 Bytes
40ad524
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import torch
import torch.nn as nn

import numpy as np

import json

import captioning.utils.opts as opts
import captioning.models as models
import captioning.utils.misc as utils

import pytorch_lightning as pl

import gradio as gr


# Checkpoint class
class ModelCheckpoint(pl.callbacks.ModelCheckpoint):

    def on_keyboard_interrupt(self, trainer, pl_module):
        # Save model when keyboard interrupt
        filepath = os.path.join(self.dirpath, self.prefix + 'interrupt.ckpt')
        self._save_model(filepath)
        
device = 'cpu' #@param ["cuda", "cpu"] {allow-input: true}

reward = 'clips_grammar' #@param ["mle", "cider", "clips", "cider_clips", "clips_grammar"] {allow-input: true}

if reward == 'mle':
    cfg = f'./configs/phase1/clipRN50_{reward}.yml'
else:
    cfg = f'./configs/phase2/clipRN50_{reward}.yml'

print("Loading cfg from", cfg)

opt = opts.parse_opt(parse=False, cfg=cfg)

import gdown

if reward == "mle":
  url = "https://drive.google.com/drive/folders/1hfHWDn5iXsdjB63E5zdZBAoRLWHQC3LD"
elif reward == "cider":
  url = "https://drive.google.com/drive/folders/1MnSmCd8HFnBvQq_4K-q4vsVkzEw0OIOs"
elif reward == "clips":
  url = "https://drive.google.com/drive/folders/1toceycN-qilHsbYjKalBLtHJck1acQVe"
elif reward == "cider_clips":
  url = "https://drive.google.com/drive/folders/1toceycN-qilHsbYjKalBLtHJck1acQVe"
elif reward == "clips_grammar":
  url = "https://drive.google.com/drive/folders/1nSX9aS7pPK4-OTHYtsUD_uEkwIQVIV7W"
gdown.download_folder(url, quiet=True, use_cookies=False, output="save/")

url = "https://drive.google.com/uc?id=1HNRE1MYO9wxmtMHLC8zURraoNFu157Dp"
gdown.download(url, quiet=True, use_cookies=False, output="data/")

dict_json = json.load(open('./data/cocotalk.json'))
print(dict_json.keys())

ix_to_word = dict_json['ix_to_word']
vocab_size = len(ix_to_word)
print('vocab size:', vocab_size)

seq_length = 1

opt.vocab_size = vocab_size
opt.seq_length = seq_length

opt.batch_size = 1
opt.vocab = ix_to_word
# opt.use_grammar = False

model = models.setup(opt)
del opt.vocab

ckpt_path = opt.checkpoint_path + '-last.ckpt'

print("Loading checkpoint from", ckpt_path)
raw_state_dict = torch.load(
    ckpt_path,
    map_location=device)

strict = True

state_dict = raw_state_dict['state_dict']

if '_vocab' in state_dict:
    model.vocab = utils.deserialize(state_dict['_vocab'])
    del state_dict['_vocab']
elif strict:
    raise KeyError
if '_opt' in state_dict:
    saved_model_opt = utils.deserialize(state_dict['_opt'])
    del state_dict['_opt']
    # Make sure the saved opt is compatible with the curren topt
    need_be_same = ["caption_model",
                    "rnn_type", "rnn_size", "num_layers"]
    for checkme in need_be_same:
        if getattr(saved_model_opt, checkme) in ['updown', 'topdown'] and \
                getattr(opt, checkme) in ['updown', 'topdown']:
            continue
        assert getattr(saved_model_opt, checkme) == getattr(
            opt, checkme), "Command line argument and saved model disagree on '%s' " % checkme
elif strict:
    raise KeyError
res = model.load_state_dict(state_dict, strict)
print(res)

model = model.to(device)
model.eval();

import clip
from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize
from PIL import Image
from timm.models.vision_transformer import resize_pos_embed

clip_model, clip_transform = clip.load("RN50", jit=False, device=device)

preprocess = Compose([
    Resize((448, 448), interpolation=Image.BICUBIC),
    CenterCrop((448, 448)),
    ToTensor()
])

image_mean = torch.Tensor([0.48145466, 0.4578275, 0.40821073]).to(device).reshape(3, 1, 1)
image_std = torch.Tensor([0.26862954, 0.26130258, 0.27577711]).to(device).reshape(3, 1, 1)

num_patches = 196 #600 * 1000 // 32 // 32
pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, clip_model.visual.attnpool.positional_embedding.shape[-1],  device=device),)
pos_embed.weight = resize_pos_embed(clip_model.visual.attnpool.positional_embedding.unsqueeze(0), pos_embed)
clip_model.visual.attnpool.positional_embedding = pos_embed

def inference(img):

  with torch.no_grad():
      image = preprocess(img)
      image = torch.tensor(np.stack([image])).to(device)
      image -= image_mean
      image /= image_std
      
      tmp_att, tmp_fc = clip_model.encode_image(image)
      tmp_att = tmp_att[0].permute(1, 2, 0)
      tmp_fc = tmp_fc[0]
      
      att_feat = tmp_att
      fc_feat = tmp_fc
      
      
  # Inference configurations
  eval_kwargs = {}
  eval_kwargs.update(vars(opt))
  
  verbose = eval_kwargs.get('verbose', True)
  verbose_beam = eval_kwargs.get('verbose_beam', 0)
  verbose_loss = eval_kwargs.get('verbose_loss', 1)
  
  # dataset = eval_kwargs.get('dataset', 'coco')
  beam_size = eval_kwargs.get('beam_size', 1)
  sample_n = eval_kwargs.get('sample_n', 1)
  remove_bad_endings = eval_kwargs.get('remove_bad_endings', 0)
  
  with torch.no_grad():
      fc_feats = torch.zeros((1,0)).to(device)
      att_feats = att_feat.view(1, 196, 2048).float().to(device)
      att_masks = None
  
      # forward the model to also get generated samples for each image
      # Only leave one feature for each image, in case duplicate sample
      tmp_eval_kwargs = eval_kwargs.copy()
      tmp_eval_kwargs.update({'sample_n': 1})
      seq, seq_logprobs = model(
          fc_feats, att_feats, att_masks, opt=tmp_eval_kwargs, mode='sample')
      seq = seq.data
  
      sents = utils.decode_sequence(model.vocab, seq)

      return sents

demo = gr.Blocks()

with demo:
    gr.Markdown(
    """
    # Demo for CLIP-Caption-Reward
    """)
    inp = gr.Image(type="pil")
    out = gr.Textbox()

    image_button = gr.Button("Run")
    image_button.click(fn=inference
               inputs=inp, 
               outputs=out)
    

demo.launch()